PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 57 | 4 |

Tytuł artykułu

The Alvarez impact theory of mass extinction; limits to its applicability and the "great expectations syndrome"

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous–Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force−fitting of data and interpretations (“great expectations syndrome”). The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause−effect scenario for the Frasnian–Famennian, Permian–Triassic, and Triassic–Jurassic (and the Eifelian–Givetian and Paleocene–Eocene as well) global events include mostly item−1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F–F extinction is potentially seen in the context of item−2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item−3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi−impact lag−time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end−Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate−active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.681-702,fig.,ref.

Twórcy

autor
  • Department of Earth Sciences, Silesian University, Będzińska Str.60, 41-200 Sosnowiec, Poland

Bibliografia

  • Abbott, S.H. and Isley, A.I. 2002. Extraterrestrial influences on mantle plume activity. Earth and Planetary Science Letters 205: 53–62.
  • Ager, D. 1993. The New Catastrophism. The Importance of the Rare Event in Geological History. 231 pp. Cambridge University Press, Cambridge.
  • Algeo, T., Shen, Y., Zhang, T., Lyons, T., Bates, S., Rowe, H., and Nguyen, T.K.T. 2008. Association of ³⁴S−depleted pyrite layers with negative carbonate δ¹³C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep ocean water masses. Geochemistry Geophysics Geosystems 9: Q04025.
  • Alroy, J. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53: 1211–1235.
  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208: 1095–1108.
  • Alvarez, W. 2003. Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology 3: 153–161.
  • Alvarez, W., Alvarez, L.W., Asaro, F., Kauffman, E.G., and Michel, H.V. 1982. Current status of the impact theory for the terminal Cretaceous extinction.In: L.T. Silver and P.H. Schultz (eds.), Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America, Special Paper 190: 305–315.
  • Alvarez, W., Hansen, T., Hut, P., and Shoemaker, E.M. 1989. Uniformitarianism and the response of Earth scientists to the theory of impact crises. In: S.V.M. Clube (ed.), Catastrophes and Evolution: Astronomical Foundations, 13–24. Proceedings of the 1988 BAAS Mason Meeting of the Royal Astronomical Society. Cambridge University Press, Cambridge.
  • Alvarez, W., Kauffman, E.G., Surlyk, F., Alvarez, L.W., Asaro, F., and Michel, H.V. 1984. Impact theory of mass extinctions and the invertebrate fossil record. Science 223: 1135–1141.
  • Arens, N.C. and West, I.D. 2008. Press−pulse: a general theory of mass extinction? Paleobiology 34: 456–471.
  • Arthur, M.A. and Barnes, H.L. 2006. Hits and misses: why some large impacts and lips cause mass extinction and others don't. Geological Society of America, Abstracts with Programs 38 (7): 338; gsa.confex.com/gsa/2006AM/finalprogram/abstract_112986.htm.
  • Bailer−Jones, C.A.L. 2011. Bayesian time series analysis of terrestrial impact cratering. Monthly Notices of the Royal Astronomical Society 416: 1163–1180.
  • Bambach, R.K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34: 127–155.
  • Barash, M.S. 2012. Mass extinction of ocean organisms at the Paleozoic–Mesozoic boundary: effects and causes. Oceanology 52: 238–248.
  • Basu, A.R, Petaev, M.I., Poreda, R.J., Jacobsen, S.B., and Becker, L. 2003. Chondritic meteorite fragments associated with the Permian–Triassic boundary in Antarctica. Science 302: 1388–1392.
  • Becker, R.T., Gradstein, F.M., and Hammer, O. 2012. The Devonian period. In: F.M. Gradstein, J.G. Ogg, M. Schmitz, and G. Ogg, (eds.), The Geologic Time Scale 2012, 559–601. Elsevier, Amsterdam.
  • Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harrison, T.M., Nicholson, C., and Iasky, R. 2004. Bedout: a possible end−Permian impact crater offshore of northwestern Australia. Science 304: 1469–1476.
  • Berggren, W.A. and Van Couvering, J.A. (eds.) 1984. Catastrophes and Earth History, the New Uniformitarianism. 478 pp. Princeton University Press, Princeton.
  • Bice, D., Newton, C.R., McCauley, S.E., Reiners, P.W., and McRoberts, C.A. 1992. Shocked quartz at the Triassic–Jurassic boundary in Italy. Science 255: 443–446.
  • Bland, P.A. 2005. The impact rate on Earth. Philosophical Transactions of the Royal Society A 363: 2793–2810.
  • Brand, U., Posenato R., Came, R., Affek, H., Angiolini, L., Azmy, K., and Farabegoli, E. 2012. The end−Permian mass extinction: a rapid volcanic CO2 and CH4—climatic catastrophe. Chemical Geology 322–323: 121–144.
  • Brookfield, M.E., Shellnutt, J.G., Qi, L., Hannigan, R., Bhat, G.M., and Wignall, P.B. 2010. Platinum element group variations at the Permo–Triassic boundary in Kashmir and British Columbia and their significance. Chemical Geology 272: 12–19.
  • Brusatte, S.L., Benton, M.J., Desojo, J.B., and Langer, M.C. 2010. The higher−level phylogeny of Archosauria (Tetrapoda: Diapsida). Journal of Systematic Palaeontology 8: 3–47.
  • Callegaro, S., Rigo, M., Chiaradia, M., and Marzoli, A. 2012. Latest Triassic marine Sr isotopic variations, possible causes and implications. Terra Nova 24: 130–135.
  • Casier, J.G. and Lethiers, F. 2001. Ostracods prove that the Frasnian/Famennian boundary mass extinction was a major and abrupt crisis. In: E. Buffetaut and C. Koeberl (eds.), Geological and Biological Effects of Impact Events. Impact Studies Series 1: 1–10.
  • Casier, J.G., Berra, I., Olempska, E., Sandberg, C., and Preat, A. 2006. Ostracods and facies of the Early and Middle Frasnian at Devils Gate in Nevada: relationship to the Alamo Event. Acta Palaeontologica Polonica 51: 813–828.
  • Chapman, C.R. 2005. Were Permian–Triassic extinctions sudden and caused by impact? Meteoritics and Planetary Science 40: A28.
  • Chatterjee, S., Guven, N., Yoshinobu, A., and Donofrio, R. 2006. Shiva structure: a possible K–T boundary impact crater on the western shelf of India. Special Publications of the Museum of Texas Tech University 50: 1–39.
  • Chijiwa, T., Arai, T., Sugai, T., Shinohara, H., Kumazawa, M., Takano, M., and Kawakami, S.I. 1999. Fullerenes found in the Permo−Triassic mass extinction period. Geophysical Research Letters 26: 767–770.
  • Claeys, P. 2004. Searching for impact fragments across the Eifelian–Givetian boundary. Geological Society of America, Abstracts with Programs 36 (5): 265.
  • Claeys, P. 2007. Impact events and the evolution of the Earth. In: M. Gargaud, H. Martin, and P. Claeys (eds.), Advances in Astrobiology and Biogeophysics, Lectures in Astrobiology II: 239–280. Springer Verlag, Berlin.
  • Claeys, P., Casier, J.G., and Margolis, S.V. 1992. Microtektite and mass extinctions: evidence for a Late Devonian asteroid impact. Science 257: 1102–1104.
  • Cleveland, D.M., Nordt, L.C., Dworkin, S.I., and Atchley, S.C. 2008. Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic–Jurassic boundary: implications for the biotic crisis? Geological Society of America Bulletin 120: 1408–1415.
  • Collins, G.S., Melosh, H.J., and Marcus, R.A. 2005. Earth impact effects program: a web−based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics and Planetary Science 40: 817–840.
  • Coney, L., Reimold, W.U., Hancox, J., Mader, D., Koeberl, C., McDonaldd, I., Struck, U., Vajda, V., and Kamo, S.L. 2007. Geochemical and mineralogical investigation of the Permian–Triassic boundary in the continental realm of the southern Karoo Basin, South Africa. Palaeoworld 16: 67–104.
  • Courtillot, V. 1999. Evolutionary Catastrophes: the Science of Mass Extinctions. 173 pp. Cambridge University Press, Cambridge.
  • Courtillot, V. and Fluteau, F. 2010. Cretaceous extinctions: the volcanic hypothesis. Science 328: 973–974.
  • Courtillot, V. and Olson, P. 2007. Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events. Earth and Planetary Science Letters 260: 495–504.
  • Cramer, B.S. and Kent, D.V. 2005. Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger. Palaeogeography, Palaeoclimatology, Palaeoecology 224: 144–166.
  • Croft, S.K. 1982. A first−order estimate of shock heating and vaporization in oceanic impacts. In: L.T. Silver and P.H. Schultz (eds.), Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper 190: 143–152.
  • Dal Corso, J., Mietto, P., Newton, R.J., Pancost, R.D., Preto, N., Roghi, G., and Wignall, P.B. 2012. Discovery of a major negative δ¹³C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40: 79–82.
  • Davison, T. and Collins, G.S. 2007. The effect of the oceans on the terrestrial crater size−frequency distribution: insight from numerical modeling. Meteoritics & Planetary Science 42: 1915–1927.
  • Deenen, M.H.L., Ruhl, M., Bonis, N.R., Krijgsman, W., Kuerschner, W.M., Reitsma, M., and van Bergen, M.J 2010. A new chronology for the end−Triassic mass extinction. Earth and Planetary Science Letters 291: 113–125
  • Dickens, G.R. and Francis, J.M. 2003. Comment on “A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion” by D.V. Kent et al. Earth and Planetary Science Letters 217: 197–200.
  • Du, Y.S., Gong, Y.M., Zeng, X.W., Huang, H.W., Yang, J.H., Zhang, Z., and Huang, Z.Q. 2008. Devonian Frasnian–Famennian transitional event deposits of Guangxi, South China and their possible tsunami origin. Science in China, D. Earth Sciences 51: 1570–1580.
  • Dypvik, H. and Jansa, L.F. 2003. Sedimentary signatures and processes during marine bolide impacts: a review. Sedimentary Geology 161: 309–337.
  • Dypvik, H., Burchell, M.J., and Claeys, P. 2004. Impacts into marine and icy environments−a short review. In: H. Dypvik, M. Burchell, and P. Claeys (eds.), Cratering in Marine Environments and on Ice, 1–20. Springer Verlag, Berlin.
  • Ellwood, B.B., Benoist, S.L., El Hassani, A., Wheeler, C., and Crick, R.E. 2003a. Impact ejecta layer from the Mid−Devonian: possible connection to global mass extinctions. Science 300: 1734–1737.
  • Ellwood, B.B., Benoist, S.L., El Hassani, A., Wheeler, C., and Crick, R.E. 2003b. Possible multiple bolide impacts at the Frasnian–Famennian boundary: evidence from two sections, Bou Tchrafine and Jebel Amelane, located in the Anti−Atlas of Morocco. Geological Society of America, Abstracts with Programs 35(6): 209; gsa.confex.com/gsa/2003AM/finalprogram/abstract_59275.htm
  • Ellwood, B.B., Algeo, T.J., El Hassani, A., Tomkin, J.H., and Rowel, H.D. 2011. Defining the timing and duration of the Kačák Interval within the Eifelian/Givetian boundary GSSP, Mech Irdane, Morocco, using geochemical and magnetic susceptibility patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 304: 74–84.
  • Ellwood, B.B., MacDonald, W.D., Wheeler, C., and Benoist, S.L. 2003c. The K–T boundary in Oman: identified using magnetic susceptibility field measurements with geochemical confirmation. Earth and Planetary Science Letters 206: 529–540.
  • Emiliani, C., Kraus, E.B., and Shoemaker, E.M. 1981. Sudden death at the end of the Mesozoic.Earth and Planetary Science Letters 55: 317–334.
  • Erwin, D.H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. 296 pp. Princeton University Press, Princeton.
  • Evans, N.J. and Chai, C.F. 1997. The distribution and geochemistry of platinum−group elements as event markers in the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 373–390.
  • Farley, K.A., Mukhopadhyay, S., and Montanari, A. 2002. The extraterrestrial 3He record: how far back can we go? Papers Presented to Impacts and the Origin, Evolution, and Extinction of Life, A Rubey Colloquium: 22. University of California, Los Angeles.
  • Farley, K.A., Ward, P., Garrison, G., and Mukhopadhyay, S. 2005. Absence of extraterrestrial 3He in Permian–Triassic age sedimentary rocks. Earth and Planetary Science Letters 240: 265–275.
  • French, B.M. and Koeberl, C. 2010. The convincing identification of terrestrial meteorite impact structures: what works, what doesn't, and why. Earth−Science Reviews 98: 123–170.
  • Feulner, G. 2011. Limits to biodiversity cycles from a unified model of mass−extinction events. International Journal of Astrobiology 10: 123–129.
  • Ganino, C. and Arndt, N.T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37: 323–326.
  • Georgiev, S., Stein, H.J., Hannah, J.L., Bernard, B., Weiss, H.M., and Piasecki, S. 2011. Hot acidic Late Permian seas stifle life in record time. Earth and Planetary Science Letters 310: 389–400.
  • Gersonde, R., Deutsch, A., Ivanov, B.A., and Kyte, F.T. 2002. Oceanic impacts–a growing field of fundamental geoscience. Deep−Sea Research II 49 951–957.
  • Gillman, M. and Erenler, H. 2008. The galactic cycle of extinction. International Journal of Astrobiology 7: 17–26.
  • Giles, P.S. 2012. Low−latitude Ordovician to Triassic brachiopod habitat temperatures (BHTs) determined from δ¹⁸O [brachiopod calcite]: a cold hard look at ice−house tropical oceans. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318: 134–152.
  • Gisler, G., Weaver, R., and Gittings, M. 2011. Calculations of asteroid impacts into deep and shallow water. Pure and Applied Geophysics 168: 1187–1198.
  • Glass, B.P. and Simonson, B.M. 2012. Distal impact ejecta layers: spherules and more. Elements 8: 43–48.
  • Glen, W. (ed.) 1994. The Mass−extinction Debates: How Science Works in a Crisis. 388 pp. Stanford University Press, Stanford.
  • Glikson, A. 2005. Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth and Planetary Science Letters 236: 933–937.
  • Glikson, A.Y., Mory, A.J., Iasky, R.P., Pirajno, F., Golding, S.D, and Uysal, I.T. 2005. Woodleigh, southern Carnarvon Basin, Western Australia: history of discovery, Late Devonian age, and geophysical and morphometric evidence for a 120 km−diameter impact structure. Australian Journal of Earth Sciences 52: 545–553.
  • Gordon, G.W., Rockman, M., Turekian, K.K., and Over, J. 2009. Osmium isotopic evidence against an impact at the Frasnian–Famennian boundary. American Journal of Science 309: 420–430.
  • Greene, S.E., Martindale, R.C., Ritterbush, K.A., Bottjer, D.J., Corsetti, F.A., and Berelson, W.M. 2012. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic–Jurassic boundary. Earth Science Reviews 113: 72–93.
  • Hallam, A. 2004. Catastrophes and Lesser Calamities. The Causes of Mass Extinctions. 274 pp. Oxford University Press, Oxford.
  • Hallam, A. and Wignall, P.B. 1997. Mass Extinctions and Their Aftermath. 320 pp. Oxford University Press, Oxford.
  • Hassler, S.W. and Simonson, B.M. 2001.The sedimentary record of extraterrestrial impacts in deep−shelf environments: evidence from the early Precambrian. Journal of Geology 109: 1–19.
  • Hatsukawa, Y., Mahmudy Gharaie, M.H., Matsumoto, R., Toh, Y., Oshima, M., Kimura, A., Noguchi, T., Goto, T., and Kakuwa, Y. 2003. Ir anomalies in marine sediments: case study for the Late Devonian mass extinction event. Geochimica et Cosmochimica Acta 67 (Supplement 18): A138.
  • Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, Z.A., Jacobsen, S.B., and Boynton, W.V. 1991. A possible Cretaceous–Tertiary boundary impact crater on the Yucatán peninsula, Mexico. Geology 19: 867–871.
  • Hodych, J.P. and Dunning, G.R. 1992. Did the Manicougan impact trigger end−of−Triassic mass extinction? Geology 20: 51–54.
  • Hoffman, A. 1989. What, if anything, are mass extinctions? Philosophical Transactions of the Royal Society of London, B 325: 253–261.
  • Hori, R.S., Fujiki, T., Inoue, E., and Kimura, J.I. 2007. Platinum group element anomalies and bioevents in the Triassic–Jurassic deep−sea sediments of Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoecology 244: 391–406.
  • Hough, M.L., Shields, G.A., Evins, L.Z., Strauss, H., Henderson, R.A., and Mackenzie, S. 2006. A major sulphur isotope event at c. 510 Ma: a possible anoxia−extinction−volcanism connection during the Early–Middle Cambrian transition? Terra Nova 18: 257–263.
  • Hough, R.M., Lee, M.R., and Bevan, A.W.R. 2003. Characterization and significance of shocked quartz from the Woodleigh impact structure, Western Australia. Meteoritics and Planetary Science 38: 1341–1350.
  • Hsü, K.J. 1989. Catastrophic extinctions and the inevitability of the improbable. Journal of the Geological Society 146: 749–754.
  • Hunt, A.P., Lucas, S,G., Heckert, A.B., and Zeigler, K. 2002. No significant nonmarine Carnian–Norian (Late Triassic) extinction event: evidence from Petrified Forest National Park. Geological Society of America Annual Meeting, Denver; gsa.confex.com/gsa/2002AM/finalprogram/abstract_42936.htm.
  • Irmis, R.B. 2011. Evaluating hypotheses for the early diversification of dinosaurs preview. Earth and Environmental Science, Transactions of the Royal Society of Edinburgh 101 (for 2010): 397–426.
  • Ishida, H., Kaiho, K., and Asano, S. 2007. Effects of a large asteroid impact on ultra−violet radiation in the atmosphere. Geophysical Research Letters 34: L23805.
  • Ivanov, B. 2008. Chapter 2 Size−frequency distribution of asteroids and impact craters: estimates of impact rate In: V.V. Adushkin and I.V. Nemchinov (eds.), Catastrophic Events Caused by Cosmic Objects, 91–116. Springer Verlag, Berlin.
  • Jansa, L.F. 1993. Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 104: 271–286.
  • Jin, Y.G., Wang, Y., Wang, W., Shang, Q.H., Cao, C.G., and Erwin, D.H. 2000. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289: 432–436.
  • Joachimski, M.M., Breisig, S., Buggisch, W., Talent, J.A., Mawson, R., Gereke, M., Morrow, J.R., Day, J., and Weddige, K. 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284: 599–609.
  • Jolley, D., Gilmour, I., Gurov, E., Kelley, S., and Watson, J. 2010. Two large meteorite impacts at the Cretaceous–Paleogene boundary. Geology 38: 835–838.
  • Jones, A.P. 2005. Meteorite impacts as triggers to large igneous provinces. Elements 1: 277–281.
  • Jourdan, F., Reimold, W.U., and Deutsch, A. 2012. Dating terrestrial impact structures. Elements 8: 49–53.
  • Jourdan, F., Renne, P.R., and Reimold, W.U. 2009. An appraisal of the ages of terrestrial impact structures. Earth and Planetary Science Letters 286: 1–13.
  • Kaiho, K., Chen, Z.Q., Kawahata, Y.K., and Sato, H. 2006a. Close−up the end−Permian mass extinction horizon recorded in the Meishan section, South China: sedimentary, elemental, and biotic characterization and negative shift. Palaeogeography, Palaeoclimatology, Palaeoecology 239: 396–405.
  • Kaiho, K., Kajiwara, Y., Chen, Z.Q., and Gorjan, P. 2006b. A sulfur isotope event at the end of the Permian. Chemical Geology 235: 33–47.
  • Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K., Ueshima, M., Chen, Z.Q., and Shi, G.R. 2001. End−Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29: 815–818.
  • Kaljo, D., Hints, L., Hints, O., Männik, P., Martma, T., and Nőlvak, J. 2011. Katian prelude to the Hirnantian (Late Ordovician) mass extinction: a Baltic perspective. Geological Journal 46: 464–477.
  • Kaufman, B. 2006. Calibrating the Devonian Time Scale: a synthesis of U−Pb ID−TIMS ages and conodont stratigraphy. Earth−Science Reviews 76: 175–190.
  • Keller, G. 2005. Impacts, volcanism and mass extinction: random coincidence or cause and effect? Australian Journal of Earth Sciences 52: 725–757.
  • Keller, G. 2011. The Cretaceous–Tertiary mass extinction: theories and controversies. In: G. Keller and T. Adatte (eds.), The End−Cretaceous Mass Extinction and the Chicxulub Impact in Texas. SEPM Society for Sedimentary Geology Special Publication 100: 7–22.
  • Keller, G., Adatte, T., Pardo, A., Bajpai, S., Khosla, A., and Samant, B. 2010. Cretaceous extinctions: evidence overlooked. Science 328: 974–975.
  • Kelley, S. 2007. The geochronology of large igneous provinces, terrestrial impact craters, and their relationship to mass extinctions on Earth. Journal of the Geological Society London 164: 923–936.
  • Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., and Van der Voo, R. 2003a. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth and Planetary Science Letters 211: 13–26.
  • Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., and Van der Voo, R. 2003b. Reply to a comment on “A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion” by G.R. Dickens and J.M. Francis. Earth and Planetary Science Letters 217: 201–205.
  • Kidder, D.L. and Worsley, T.R. 2010. Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 295: 162–191.
  • Kieffer, S.W. and Simonds, C.H. 1980. The role of volatiles and lithology in the impact cratering process. Reviews of Geophysics and Space Physics 18: 143–181.
  • Kiessling, W. and Danelian, T. 2011. Trajectories of Late Permian–Jurassic radiolarian extinction rates: no evidence for an end−Triassic mass extinction. Fossil Record 14: 95–101.
  • Kiessling, W., Aberhan, M., Brenneis, B., and Wagner, P.J. 2007. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244: 201–222.
  • Kirkham, A. 2003. Glauconitic spherules from the Triassic of the Bristol area, SW England: probable microtektite pseudomorphs. Proceedings of the Geologists’ Association 114: 11–21.
  • Koeberl, C. 2007. The geochemistry and cosmochemistry of impacts. In: A. Davis (ed.), Treatise of Geochemistry, vol. 1, 1.28.1–1.28.52. Elsevier, New York; doi:10.1016/B978−008043751−4/00228−5; online edition.
  • Koeberl, C. and Martinez−Ruiz, F. 2003. The stratigraphic record of impact events: a short overview. In: C. Koeberl and F. Martinez−Ruiz (eds.), Impact Markers in the Stratigraphic Record (Impact Studies), 1–40. Springer Verlag, Berlin.
  • Koeberl, C., Armstrong, R.A., and Reimold, W.U. 1997 Morokweng, South Africa: a large impact structure of Jurassic–Cretaceous boundary age. Geology 25: 731–734.
  • Koeberl, C., Claeys, P., Hecht L., and McDonald, I. 2012. Geochemistry of impactites. Elements 8: 37–42.
  • Koeberl, C., Farley, K.A., Peucker−Ehrenbrink, B., and Sephton, M.A. 2004. Geochemistry of the end−Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology 32: 1053–1056.
  • Koeberl, C., Gilmour, I., Reimold, W.U., Claeys, P., and Ivanov, B. 2002. Comment on “End−Permian catastrophe by bolide impact: evidence of a gigantic release of sulfur from the mantle” by Kaiho et al. (Geology, 29, 815–818, 2001). Geology 30: 855–856.
  • Kring, D.A. 2003. Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology 3: 133–152.
  • Kring, D.A. 2005. Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (~24 km) and Chicxulub (~180 km) impact craters. Chemie der Erde – Geochemistry 65: 1–46.
  • Kring, D.A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255: 4–21.
  • Kuroda, J., Hori, R.S., Suzuki, K., Grocke, D.R., and Ohkouchi, N. 2010. Marine osmium isotope record across the Triassic–Jurassic boundary from a Pacific pelagic site. Geology 38: 1095–1098.
  • Kyte, F.T. 2002a. Iridium concentrations and abundances of meteoritic ejecta from the Eltanin impact in sediment cores from Polarstern expedition ANT XII/4. Deep−Sea Research II 49: 1049–1061.
  • Kyte, F.T. 2002b. Tracers of the extraterrestrial component in sediments and inferences for Earth's accretion history. In: C. Koeberl and K.G. MacLeod (eds.), Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America, Special Paper 356: 21–38.
  • Levman, B.G., and von Bitter, P.H. 2002. The Frasnian–Famennian (mid−Late Devonian) boundary in the type section of the Long Rapids Formation, James Bay Lowlands, northern Ontario, Canada. Canadian Journal of Earth Sciences 39: 1795–1818.
  • Lewis, D.F.V. and Dorne, J.C.M. 2006. The astronomical pulse of global extinction events. The Scientific World Journal 6: 718–726.
  • Li, Y.F., Liang, H.D., Yin, H.F., Sun, J., Cai, H., Rao, Z., and Ran, F.L. 2005. Determination of fullerenes C⁶⁰/C⁷⁰ from the Permian–Triassic boundary in the Meishan section of South China. Acta Geologica Sinica 79: 11–15.
  • Lucas, S.G. 2006. 25 years of mass extinctions and impacts. Geotimes 50(2): 28–32.
  • Lucas, S.G. and Tanner, L.H. 2008. Reexamination of the end−Triassic mass extinction. In: A.M.T. Elewa (ed.), Mass Extinction, 66–103. Springer Verlag, Berlin.
  • Lucas, S.G., Tanner, L.H., Kozur, H.W.,Weems, R.E., and Heckert, A.B. 2012. The Late Triassic timescale: age and correlation of the Carnian–Norian boundary. Earth Science Reviews 114: 1–18.
  • Ma, X.P. and Bai, S.L. 2002. Biological, depositional, microspherule, and geochemical records of the Frasnian/Famennian boundary beds, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 181: 325–346.
  • MacLeod, N. 2005. Mass extinction causality: statistical assessment of multiple−cause scenarios.Russian Geology and Geophysics 46: 993–1001.
  • Marini, F. 2003. Natural microtektites versus industrial glass beads: an appraisal of contamination problems. Journal of Non−Crystalline Solid 323: 104–110.
  • Marini, F. and Casier, J.G. 1997. Glass beads from reflective road markings: potential contaminants versus microtektites? First evaluation. In: A. Raukas (ed.), Impact and Extraterrestrial Spherules: New Tools for Global Correlation. International Symposium, IGCP Project 384, 1–5 July 1997, Excursion Guide and Abstracts, 31–32. Tallinn.
  • Marvin, U.B. 1990. Impact and its revolutionary implications for geology. In: V.L. Sharpton and P.D. Ward (eds.), Global catastrophes in earth history; an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America, Special Paper 247: 147–154.
  • Matyja, H. and Narkiewicz, M. 1992. Conodont biofacies succession near the Frasnian/Famennian boundary—some Polish examples. Courier Forschungs−Institut Senckenberg 154: 125–147.
  • McCall, G.J.H. 2009. Half a century of progress in research on terrestrial impact structures: a review. Earth−Science Reviews 92: 99–116.
  • McElwain, J.C., Popa, M.E., Hesselbo, S.P., Haworth, M., and Surlyk, F. 2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33: 547–573.
  • McGhee, G.R. 1996. The Late Devonian Mass Extinction. The Frasnian-Famennian Crisis. 378 pp. Columbia University Press, New York.
  • McGhee, G.R. 2001. The “multiple impacts hypothesis” for mass extinction: a comparison of the Late Devonian and the late Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 176: 47–58.
  • McGhee, G.R. 2005. Testing Late Devonian extinction hypotheses. In: D.J. Over, J.R. Morrow, and P.B. Wignall (eds.), Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Developments in Palaeontology and Stratigraphy 20: 37–50.
  • McLaren, D.J. 1970. Presidential address: time, life and boundaries. Journal of Paleontology 48: 801–815.
  • McLaren, D.J. and Goodfellow, W.D. 1990. Geological and biological consequences of giant impacts. Annual Review of Earth and Planetary Sciences 18: 123–171.
  • Melott, A.L. and Bambach, R.K. 2011. A ubiquitous 62−Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37: 383–408.
  • Melott, A.L., Lieberman, B.S., Laird, C.M., Martin, L.D., Medvedev, M.V., Thomas, B.C., Cannizzo, J.K, Gehrels, N., and Jackman, C.H. 2004. Did a gamma−ray burst initiate the late Ordovician mass extinction? International Journal of Astrobiology 3: 55–61.
  • Morgan, P.J., Reston, T.J., and Ranero, C.R., 2004. Contemporaneous mass extinctions, continental flood basalts, and impact signals: are mantle plume−induced lithospheric gas explosions the causal link? Earth and Planetary Science Letters 217: 263– 284.
  • Morrow, J.R. 2006. Impacts and mass extinctions revisited. Palaios 21: 313–315.
  • Morrow, J.R., Sandberg, C.A., and Harris, A.G. 2005. Late Devonian Alamo Impact, southern Nevada, USA: evidence of size, marine site, and widespread effects. In: T. Kenkmann, F. Hörz, and A. Deutsch (eds.), Large meteorite impacts III. Geological Society of America, Special Paper 384: 259–280.
  • Morrow, J.R., Sandberg, C.A., Malkowski, K., and Joachimski, M.M. 2009. Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 282: 105–118.
  • Mory, A.J., Iasky, R.P., Glikson, A.Y., and Pirajno, F. 2000. Woodleigh, Carnarvon Basin, Western Australia: a new 120 km diameter impact structure. Earth and Planetary Science Letters 177: 119–128.
  • Mossman, D.J., Grantham, R.G., and Langenhorst, F. 1998. A search for shocked quartz at the Triassic–Jurassic boundary in the Fundy and Newark basins of the Newark Supergroup. Canadian Journal of Earth Sciences 35: 101–109.
  • Müller, R.D., Goncharov, A., and Kritski, A. 2005. Geophysical evaluation of the enigmatic Bedout basement high, offshore northwestern Australia. Earth and Planetary Science Letters 237: 263–284.
  • Napier, W.M. and Clube, S.V.M. 1979. A theory of terrestrial catastrophism. Nature 282: 455–459.
  • Newton, R. and Bottrell, S. 2007. Stable isotopes of carbon and sulphur as indicators of environmental change: past and present. Journal of the Geological Society London 64: 691–708.
  • Newton, R.J., Pevitt, E.L., Wignall, P.B., and Bottrell, S.H. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth and Planetary Science Letters 218: 331–345.
  • Officer, C. and Page, J. 1996. The Great Dinosaur Extinction Controversy. 209 pp. Addison−Wesley, Reading, MA.
  • Olsen, P.E., Kent, D.V., Sues, H.−D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E.C., Fowell, S.J., Szaina, M.J., and Hartline, B.W. 2002. Ascent of the dinosaurs linked to the iridium anomaly at the Triassic–Jurassic boundary. Science 296: 1305–1307.
  • Olsen, P.E., Kent, D.V., and Whiteside, J.H. 2011. Implications of the Newark Supergroup−based astrochronology and geomagnetic polarity time scale for the early diversification of the Dinosauria. Earth and Environmental Science, Transactions of the Royal Society of Edinburgh 101 (for 2010): 201–229.
  • Olsen, P.E., Shubin, N.H., and Anders, M.H. 1987. New Early Jurassic tetrapod assemblages constrain Triassic–Jurassic tetrapod extinction event. Science 237: 1025–1029.
  • Over, J. 2002. The Frasnian/Famennian boundary in central and eastern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 181: 153–169.
  • Öpik, E.J. 1958. On the catastrophic effect of collisions with celestial bodies. Irish Astronomical Journal 5: 34–36.
  • Pálfy, J. 2004. Did the Puchezh−Katunki impact trigger an extinction? In: H. Dypvik, M. Burchell, and P. Claeys (eds.), Cratering in Marine Environments and on Ice, 135–148. Springer Verlag, Berlin.
  • Palmer, T. 2003. Perilous Planet Earth: Catastrophes and Catastrophism Through the Ages. 522 pp. Cambridge University Press, Cambridge.
  • Payne, J.L. and Clapham, M.E. 2012. End−Permian mass extinction in the Oceans: an ancient analog for the twenty−first century? Annual Review of Earth and Planetary Sciences 40: 89–111.
  • Perry, R., Becker, L., Haggart, J., and Poreda, R. 2003. Triassic–Jurassic mass extinction: Evidence for bolide impact? In: EGS−AGU−EUG Joint Assembly, Nice, France, Abstracts, 7612; http://adsabs.harvard.edu/abs/2003EAEJA.....7612P
  • Pierazzo, E., Garcia, R.R., Kinnison, D.E., Marsh, D.R., Lee−Taylor, J., and Crutzen, P.J. 2010. Ozone perturbation from medium−size asteroid impacts in the ocean. Earth and Planetary Science Letters 299: 263–272.
  • Pierazzo, E., Hahmann, A.N., and Sloan, L.C. 2003. Chicxulub and climate: radiative perturbations of impact−produced S−bearing gases. Astrobiology 3: 99–118.
  • Pigatia, J.S., Latorre, C, Rech, J.A. , Betancourt, J.L., Martínez, K.E., and Budahn, J.R. 2012. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences 334: 199–220.
  • Pintera, N., Scott, A.C., Daulton, T.L., Koeberl, C., and Anderson, R.S. 2011. The Younger Dryas impact hypothesis: a requiem. Earth−Science Reviews 106: 247–264.
  • Pinto, J.A. and Warme, J.E. 2008. Alamo Event, Nevada: crater stratigraphy and impact breccia realms. In: K.R. Evans, J.W. Horton, D.T. King, and J.R. Morrow (eds.), The sedimentary record of meteorite impacts. Geological Society of America, Special Paper 437: 99–137.
  • Pisarzowska, A. and Racki, G. 2012. Isotopic chemostratigraphy across the Early–Middle Frasnian transition (Late Devonian) on the South Polish carbonate shelf: a reference for the global punctata Event.Chemical Geology 334: 199–220.
  • Plotnick, R.E. and Sepkoski, J.J. 2001. A multiplicative multifractal model for originations and extinctions. Paleobiology 27: 126–139.
  • Poag, C.W. 1997. Roadblocks on the kill curve: testing the Raup hypothesis. Palaios 12: 582–590.
  • Poag, C.W., Plescia, J.B., and Molzer, P.C. 2002. Ancient impact structures on modern continental shelves: the Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America. Deep−Sea Research II 49: 1081–1102.
  • Prothero, D.R. 2009. Do impacts really cause most mass extinctions? In: J. Seckbach and M. Walsh (eds.), From Fossils to Astrobiology Cellular Origin, Records of Life on Earth and Search for Extraterrestrial Biosignatures. Life in Extreme Habitats and Astrobiology, Vol. 12 [2008], Part 3 (5), 409–423. Springer Verlag, Berlin.
  • Purnell, J. 2009. Global mass wasting at continental margins during Ordovician high meteorite influx. Nature Geoscience 2: 57–61.
  • Racka, M. 1999. Geochemiczny aspekt wymierania na granicy fran−famen na przykładzie szelfu południowej Polski. 170 pp. Unpublished Ph.D. thesis, University of Silesia, Sosnowiec.
  • Racki, G. 1999. The Frasnian–Famennian biotic crisis: how many (if any) bolide impacts? Geologische Rundschau 87: 617–632.
  • Racki, G. 2005. Toward understanding Late Devonian global events; few answers, many questions. In: D.J. Over, J.R. Morrow, and P.B. Wignall (eds.), Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Developments in Palaeontology and Stratigraphy 20: 5–36.
  • Racki, G. and Koeberl, C. 2004. Comment on “Impact ejecta layer from the Mid−Devonian: possible connection to global mass extinctions”. Science 303: 471b.
  • Racki, G. and Wignall, P.B. 2005. Late Permian double−phased mass extinction and volcanism: an oceanographic perspective. In: D.J. Over, J.R. Morrow, and P.B. Wignall (eds.), Understanding Late Devonian and Permian–Triassic Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy 20: 263–297.
  • Racki, G., Machalski, M., Koeberl, C., and Harasimiuk, M. 2011. The weathering modified iridium record of a new Cretaceous–Palaeogene site at Lechówka near Chełm, SE Poland, and its palaeobiologic implications. Acta Palaeontologica Polonica 56: 205–215.
  • Racki, G., Racka, M., Matyja, H., and Devleeschouwer, X. 2002. The Frasnian/Famennian boundary interval in the South Polish−Moravian shelf basins: integrated event−stratigraphical approach. Palaeogeography, Palaeoclimatology, Palaeoecology 181: 251–297.
  • Ramezani, J., Hoke, G.D., Fastovsky, D.E., Bowring, S.A., Therrien, F., Dworkin, S.I., Atchley, S.C., and Nordt, L.C. 2011. High−precision U−Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. Geological Society of America Bulletin 123: 2142–2159.
  • Rampino, M.R. 1998. The galactic theory of mass extinctions: an update. Celestial Mechanics and Dynamical Astronomy 69: 49–58.
  • Rampino, M.R. 2010. Mass extinctions of life and catastrophic flood basalt volcanism. Proceedings of the National Academy of Sciences 107: 6555–6556.
  • Rampino, M.R. and Haggerty, B.M. 1996a. Impact crises and mass extinctions: a working hypothesis. In: G. Ryder, D.E. Fastovsky, and S. Gartner (eds.), The Cretaceous–Tertiary Event and Other Catastrophes in Earth History. Geological Society of America, Special Paper 307: 11–30.
  • Rampino, M.R. and Haggerty, B.M. 1996b. The “Shiva Hypothesis”: impacts, mass extinctions, and the galaxy. Earth, Moon, and Planets 71: 441–460.
  • Rampino, M.R., Haggerty, B.M., and Pagano, TC. 1997. A unified theory of impact crises and mass extinctions: quantitative tests. Annals of the New York Academy of Sciences 822: 403–431.
  • Raup, D.M. 1991. Extinction: Bad Genes or Bad Luck? 224 pp. W.W. Norton & Company, New York.
  • Raup, D.M. 1992. Large−body impact and extinction in the Phanerozoic. Paleobiology 18: 80–88.
  • Raup, D.M. and Sepkoski, J.J. 1982. Mass extinctions in the marine fossil record. Science 215: 1501–1503.
  • Reimold, W.U. 2007. Revolutions in the Earth sciences: continental drift, impact and other catastrophes. South African Journal of Geology 110: 1–46.
  • Reimold, W.U. and Jourdan, F. 2012. Impact! — Bolides, craters, and catastrophes. Elements 8: 19–24.
  • Reimold, W.U., Koeberl, C., Hough, R., McDonald, I., Bevan, A., Amare, K., and French, B.M. 2003. Woodleigh impact structure: shock petrography and geochemical studies. Meteoritics and Planetary Science 7: 1109–1130.
  • Reimold, W.U., Kelley, S.P., Sherlock, S.C., Henkel, H., and Koeberl, C. 2005. Laser argon dating of melt breccias from the Siljan impact structure, Sweden: implications for a possible relationship to Late Devonian extinction events. Meteoritics and Planetary Science 40: 591–607.
  • Renne, P.R., Melosh, H.J., Farley, K.A., Reimold, W.U., Koeberl, C., Rampino, M.R., Kelly, S.P., and Ivanov, B.A. 2004. Is Bedout an impact crater? Take 2. Science 306: 610–611.
  • Renne, P.R., Reimold, W.U., Koeberl, C., Hough, R., and Claeys, P. 2002. Critical comment on: I.T. Uysal et al. “K−Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia”. Earth and Planetary Science Letters 201: 247–252.
  • Retallack, G.J. 2009. Greenhouse crises of the past 300 million years. Geological Society of America Bulletin 121: 1441–1455.
  • Robinson, N., Ravizza, G., Coccioni, R., Peucker−Ehrenbrink, B., and Norris, R. 2009. A high−resolution marine 187Os/188Os record for the late Maastrichtian: distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth and Planetary Science Letters 281: 159–168.
  • Rogers, G.C. 1982. Oceanic plateaus as meteorite impact signatures. Nature 299: 341–342.
  • Ros, S. and Echevarría, J. 2012. Ecological signature of the end−Triassic biotic crisis: what do bivalves have to say? Historical Biology 24: 489–503.
  • Ruhl, M. and Kürschner, W.M. 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic–Jurassic transition. Geology 39: 431–434.
  • Saito, T., Kaiho, K., Abe, A., Katayama, M., and Takayama, K. 2008. Hypervelocity impact of asteroid/comet on the oceanic crust of the Earth. International Journal of Impact Engineering 35: 1770–1777.
  • Sandberg, C.A., Morrow, J.R., and Ziegler, W. 2002. Late Devonian sea−level changes, catastrophic events, and mass extinctions: In: C. Koeberl and K.G. MacLeod (eds.), Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America, Special Paper 356: 473–487.
  • Schaller, M.F., Wright, J.D., and Kent, D.V. 2011. Atmospheric Pco2 perturbations associated with the Central Atlantic Magmatic Province. Science 331: 1404–1409.
  • Schieber, J. and Over, D.J. 2005. Sedimentary fill of the Late Devonian Flynn creek crater: a hard target marine impact In: D.J. Over, J.R. Morrow, and P.B. Wignall (eds.), Understanding Late Devonian and Permian–Triassic Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology and Stratigraphy 20: 51–69.
  • Schmieder, M. and Buchner, E. 2008. Dating impact craters: palaeogeographic versus isotopic and stratigraphic methods—a brief case study. Geological Magazine 145: 586–590.
  • Schmieder, M., Buchner, E., Schwarz, W.H., Trielofd, D., and Lambert, M. 2010. A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteoritics & Planetary Science 45: 1225–1242.
  • Schmitz, B., Ellwood, B.B., Peucker−Ehrenbrink, B., El Hassani, A., and Bultynck, P. 2006. Platinum group elements and 187Os/189Os in a purported impact ejecta layer near Eifelian–Givetian stage. Earth and Planetary Science Letters 249: 162–172.
  • Schmitz, B., Harper, D.A.T., Peucker−Ehrenbrink, B., Stouge, S., Alwmark, C., Cronholm, A., Bergstrom, S.M., Tassinari, M., and Wang, X.. 2008. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geoscience 1: 49–53.
  • Schmitz, B., Peucker−Ehrenbrink, B., Heilmann−Clausen, C., Åberg, G., Asaro, F., and Lee, C.T.A. 2004. Basaltic explosive volcanism, but no comet impact, at the Paleocene–Eocene boundary: high−resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth and Planetary Science Letters 225: 1–17.
  • Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T.J. 2010. Correlating the end−Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38: 387–390.
  • Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales−Nishimura, J.M., Grieve, R.A., Gulick, S.P., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo−Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia−Fucugauchi, J., Vajda, V., Whalen, M.T., and Willumsen, P.S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327: 1214–1218.
  • Sephton, M.A., Amor, K., Franchi, I.A., Wignall, P.B., Newton, R., and Zonneveld, J.P. 2002. Carbon and nitrogen isotope disturbances and an end−Norian (Late Triassic) extinction event. Geology 30: 1119–1122.
  • Shoemaker, E.M., Wolfe, R.F., and Shoemaker, C.S. 1990. Asteroid and comet flux in the neighborhood of Earth. In: V.L. Sharpton and P.D. Ward (eds.), Global catastrophes in Earth history. Geological Society of America, Special Paper 247: 155–170.
  • Shuvalov, V., Trubetskaya, I., and Artemieva, N. 2008. Chapter 9 Marine target impacts. In: V.V. Adushkin and I.V. Nemchinov (eds.), Catastrophic Events Caused by Cosmic Objects, 291–311. Springer Verlag, Berlin.
  • Simms, M.J. 2007. Uniquely extensive soft−sediment deformation in the Rhaetian of the UK: evidence for earthquake or impact? Palaeogeography, Palaeoclimatology, Palaeoecology 244: 407–423.
  • Simonson, B.M. and Glass, B.P. 2004. Spherule layers—records of ancient impacts. Annual Review of Earth and Planetary Science 32: 329–361.
  • Smith, R. 2011. Lost world. Did a giant impact 200 million years ago trigger a mass extinction and pave the way for the dinosaurs? Nature 479: 287–289.
  • Sobolev, S.V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V.A., and Vasiliev, Y.R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477: 312–316.
  • Spray, J.G., Kelley, S.P., and Rowley, D.B. 1998. Evidence for a Late Triassic multiple impact event on Earth. Nature 392: 171–173.
  • Spray, J.G., Thompson, L.M., Biren, M.B., and O’Connell−Cooper, C. 2010. The Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science. Planetary and Space Science 58: 538–551.
  • Stanley, S.M. 1990. Delayed recovery and the spacing of major extinctions. Paleobiology 16: 401–414.
  • Stanley, S.M. 1999. Earth System History. 615 pp. W.H. Freeman, San Francisco.
  • Stewart, S.A. 2011. Estimates of yet−to−find impact crater population on Earth. Journal of the Geological Society London 168: 1–14.
  • Şengör, A.M.C., Atayman, S., and Özeren, S., 2008. A scale of greatness and causal classification of mass extinctions: Implications for mechanisms. Proceedings of the National Academy of Sciences of the United States of America 105: 13736–13740.
  • Tanner, L.H. 2010. The Triassic isotope record. In: S.G. Lucas (ed.), The Triassic Timescale. Geological Society London, Special Publications 334: 103–118.
  • Tanner, L.H., Kyte, F.T., and Walker, A.E. 2008. Multiple Ir anomalies in uppermost Triassic to Jurassic−age strata of the Blomidon Formation: Fundy basin, eastern Canada. Earth and Planetary Science Letters 274: 103–111.
  • Tanner, L.H., Lucas, S.G., and Chapman, M.G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth−Science Reviews 65: 103–139.
  • Tejada, M.L.G., Ravizza, G., Suzuki, K., and Paquay, F.S. 2012. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo−Tethys Ocean. Scientific Reports 2 (268): 9 pp.
  • Thackrey, S., Walkden, G., Indares, A., Horstwood, M., Kelley, S., and Parrish, R. 2009. The use of heavy mineral correlation for determining the source of impact ejecta: a Manicouagan distal ejecta case study. Earth and Planetary Science Letters 285: 163–172.
  • Tohver, E., Lana, C., Cawood, P.A, Fletcher, I.R. Jourdan, F., Sherlock, S., Rasmussen, B., Trindade, R.I.F., Yokoyama, E., Souza Filho, C.R., and Marangoni, Y. 2012. Geochronological constraints on the age of a Permo−Triassic impact event: U−Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochimica et Cosmochimica Acta 86: 214–227.
  • Toon, O.B., Zahnle, K., Morrison, D., Turco, R.P., and Covey, C. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics 35: 41–78.
  • Trefil, J.S. and Raup, D.M. 1992. Crater taphonomy and bombardment rates in the Phanerozoic. Journal of Geology 98: 385–398.
  • Tsujita, C.J. 2001. The significance of multiple causes and coincidence in the geological record: from clam clusters to Cretaceous catastrophe.Canadian Journal of Earth Sciences 38: 271–292.
  • Turgeon, S.C., Creaser, R.A., and Algeo, T.J. 2007. Re−Os depositional ages and seawater Os estimates for the Frasnian–Famennian boundary: implications for weathering rates, land plant evolution, and extinction mechanisms. Earth and Planetary Science Letters 261: 649–661.
  • Twitchet, R.J. 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 190–213.
  • Uysal, I.T., Golding, S.D., Glikson, A.Y., Mory, A.J., and Glikson, M. 2001. K−Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia. Earth and Planetary Science Letters 192: 218–289.
  • Uysal, I.T., Mory, A.J., Golding, S.D., Bolhar, R., and Collerson, E.K.D. 2005. Clay mineralogical, geochemical and isotopic tracing of the evolution of the Woodleigh impact structure, Southern Carnarvon Basin, Western Australia. Contributions to Mineralogy and Petrology 149: 576–590.
  • Voldman, G., Genge, M.J., Albanesi, G.L., Barnes, C.R, and Ortega, G. 2012. Cosmic spherules from the Ordovician of Argentina. Geological Journal (published online).
  • von Frese, R.R.B., Potts, L.V., Wells, S.B., Leftwich, T.E., Kim, H.R., Kim, J.W., Golynsky, A.V., Hernandez, O., and Gaya−Piqué, L.R. 2009. GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochemistry Geophysics Geosystems 10: Q02014.
  • Walkden, G.M. and Parker, J. 2006. Large bolide impacts: is it only size that counts? In: First International Conference on Impact Cratering in the Solar System ESTEC, Noordwijk, The Netherlands, European Space Agency Special Publication 612: 139–144; sci.esa.int/science−e/www/object/doc.cfm?fobjectid=40226.
  • Walkden, G. and Parker, J. 2008. The biotic effects of large bolide impacts: size versus time and place. International Journal of Astrobiology 7: 209–215.
  • Walkden, G., Parker, J., and Kelley, S. 2002. A Late Triassic impact ejecta layer in southwestern Britain. Science 298: 2185–2188.
  • Walliser, O.H. 1996. Patterns and causes of global events. In: O.H. Walliser (ed.), Global Events and Event Stratigraphy in the Phanerozoic, 7–19. Springer−Verlag, Berlin.
  • Wang, K., Orth, C.J., Attrep, M., Chatterton, B.D.E., Hou, H., and Geldsetzer, H.H.J. 1991. Geochemical evidence for a catastrophic biotic event at the Frasnian–Fammenian boundary in south China. Geology 19: 776–779.
  • Ward, P.D. 2007. Under a Green Sky: Global Warming, the Mass Extinctions of the Past, and What They Can Tell Us About Our Future. 272 pp. Harper Collins Publishers, New York.
  • Ward, P.D., Haggart, J.W., Carter, E.S., Wilbur, D., Tipper, H.W., and Evans, T. 2001. Sudden productivity collapse associated with the Triassic–Jurassic boundary mass extinction. Science 292: 1148–1151.
  • White, R.V. and Saunders, A.D. 2005. Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos 79: 299–316.
  • Whiteside, J.H., Olsen, P.E., Eglinton, T., Brookfield, M.E., and Sambrotto, R.N. 2010. Compound−specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end−Triassic mass extinction. Proceedings of the National Academy of Sciences of the United States of America 107: 6721–6725.
  • Wignall, P.B. 2005. The link between large igneous province eruptions and mass extinctions. Elements 1: 293–297.
  • Wignall, P.B., Bond, D.P.G., Kuwahara, K., Kakuwa, Y., Newton, R.J., and Poulton, S.W. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino−Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change 71: 109–123.
  • Wilde, P. and Quinby−Hunt, M.S. 1997. Collisions with ice−volatile objects: geological implications—a qualitative treatment. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 47–63.
  • Wünnemann, K., Collins, G.S., and Weiss, R. 2010. Impact of a cosmic body into earth's ocean and the generation of large tsunami waves: insight from numerical modeling. Reviews of Geophysics 48: RG4006.
  • Xu, L., Lin, Y., Shen, W., Qi, L., Xie, L., and Ouyang, Z. 2007. Platinumgroup elements of the Meishan Permian–Triassic boundary section: evidence for flood basaltic volcanism. Chemical Geology 246: 55–64.
  • Yabushita, S. and Kawakami, S.I. 2007. Measurement of iridium in the fullerene−rich layer in central Japan by the neutron activation method. Fullerenes, Nanotubes and Carbon Nanostructures 15: 127–133.
  • Zeng, J.W., Xu, R., and Gong, Y.M. 2011. Hydrothermal activities and seawater acidification in the Late Devonian F–F transition: evidence from geochemistry of rare earth elements. Science China Earth Sciences 54: 540–549.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d1182c96-9ae1-48af-858c-a2f844a3d830
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.