PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Chromium and nickel accumulation by plants along an altitudinal gradient in western Carpathian secondary spruce stands

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our research was realized in segments of 80-year-old secondary spruce ecosystems selected in the buffer zone of Slovenský raj NP (western Carpathians). The vertical transect (635-1,110 m a.s.l.) consisted of three localities with six geobiocoenological plots. The Cr contents (mg kg-1) found in surface humus (0.38±0.04-2.18±0.22) and Ao horizons (0.20±0.03-3.16±0.32) of Skeli-Humic Podzols and Dystric Cambisols were nearly the same, in contrast to Ni (5.27±0.47-22.41±2.02 and 0.81±0.07-3.75±0.34 mg kg⁻¹, respectively). Ni contents in Ool and Oof horizons of surface humus with altitude as a rule decreased, while in Ooh horizon increased. For Cr a similar dependence was not observed. The Cr contents in plants (Dryopteris dilatata, Luzula luzuloides, Prenanthes purpurea, Rubus idaeus, Senecio ovatus, Solidago virgaurea, Vaccinium myrtillus) were usually lower than 0.4-0.5 mg kg⁻¹, with the exception of V. myrtillus (> 1.1 mg kg⁻¹) at 1,110 m a.s.l. On the other hand, Ni content was mostly higher as background value (1.5 mg kg-1), and in the case of S. virgaurea up above 10 mg kg⁻¹ at 650 m a.s.l. The highest mean Ni content was found in S. ovatus, and it significantly (p < 0.05) differed from those found in V. myrtillus and L. luzuloides (fertile) shoots. Stronger positive linear correlations were between Cr content in soils and shoots of D. dilatata and L. luzuloides (sterile). For Ni, it was R. idaeus. Ni transfer coefficients (TC) found for five plants (L. luzuloides – sterile, R. idaeus, D. dilatata, S. ovatus, S. virgaurea) rooted in surface horizons of Cambisols were higher than 1, thus pointing at the impact of soil contamination. Cr TC higher than 1 were found for D. dilatata (2.4) and V. myrtillus (1.1.-3.6) rooted in the surface horizons of Podzols, indicating the better bio-accumulation ability of these plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1563-1572,fig.,ref.

Twórcy

autor
  • Institute of Forest Ecology of the Slovak Academy of Sciences, Sturova 2, 960 53 Zvolen, Slovak Republic
autor
  • Institute of Forest Ecology of the Slovak Academy of Sciences, Sturova 2, 960 53 Zvolen, Slovak Republic
autor
  • Institute of Forest Ecology of the Slovak Academy of Sciences, Sturova 2, 960 53 Zvolen, Slovak Republic

Bibliografia

  • 1. Wei B., Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J., 94, 99, 2010.
  • 2. Khan Z.I., Ahmad K., Raza N., Al-Qurainy F., Ashraf M., Hussain A. Assessment of chromium concentrations in soil-plant-animal continuum: possible risk for grazing cattle. Pak. J. Bot., 42, 3409, 2010.
  • 3. Szabó S., Szabó G., Bihari Á. Effects of acid loadings on heavy metal mobilization in cambisols. Annales Geographicae, 40, 72, 2007.
  • 4. Iyaka Y.A. Chromium in Soils: A Review of its Distribution and Impacts. C. J. Env. Sci., 3, 13, 2009.
  • 5. Sinam G., Sinha S., Mallick S. Effect of chromium on accumulation and antioxidants in Cucumis utillissimus L.: Response under enhanced bioavailability condition. J. Environ. Sci., 23, 506, 2011.
  • 6. Shanker A.K., Cervantes C., Loza -Tavera H., Avudainayagam S. Chromium toxicity in plants. Environ. Int., 31, 739, 2005.
  • 7. Andjelkovi ć D.H., Andjelkovi ć T.D., Nikoli ć R.S., Purenovi ć M.M., Blagojevi ć S.D., Boji ć A.L.J., Risti ć M.M. Leaching of chromium from chromium contaminated soil – a speciation study and geochemical modeling. J. Serb. Chem. Soc.,77, 119, 2012.
  • 8. FOZIA A., MUHAMMAD A.Z, MUHAMMAD A., ZAFAR M.K. Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J. Environ. Sci., 20, 1475, 2008.
  • 9. Nouri J., Khorasani N., Lorestani B., Karami M., Hassani A.H., Yousefi N. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth. Sci., 59, 315, 2009.
  • 10. Jun R., Ling T., Guanghua Z. Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. Environ. Sci. Tech., 6, 571, 2009.
  • 11. Budak F., Zaimo ğlu Z., Başcı N. Uptake and translocation of hexavalent chromium by selected species of ornamental plants. Pol. J. Environ. Stud., 20, 857, 2011.
  • 12. Moreno D.A., Víllora G., Soriano M.T., Castilla N., Romero L. Sulfur, chromium, and selenium accumulated in Chinese cabbage under direct covers. J. Environ. Manage., 74, 89, 2005.
  • 13. Sampanpanish P., Tippayasak K., Chairatutai P. Chromium accumulation by phytoremediation with monocot weed plant species and a hydroponic sand culture system. J. Environ. Res. Develop., 4, 654, 2010.
  • 14. MISHRA S., SINGH V., SRIVASTAVA S., SRIVASTAVA R., SRIVASTAVA M.M., DASS S., SATSANGI G.P., PRAKASH S. Studies on uptake of trivalent and hexavalent chromium by maize (Zea mays). Food Chem. Toxicol., 33, 393, 1995.
  • 15. Kabata -Pendias A. Trace elements in soils and plants, 4th ed. CRC Press, Taylor and Francis Group, USA, pp. 505, 2010.
  • 16. Rooney C.P., Zhao F-J., McGrath S.P. Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environ. Pollut., 145, 596, 2007.
  • 17. Dan T., Hale B., Johnson D., Conard B., Stiebel B., Veska E. Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne, Ontario, Canada. Can. J. Soil Sci., 88, 389, 2008.
  • 18. Kukier U., Peters C.A., Chaney R.L., Angle J.S., Roseberg R.J. The effect of pH on metal accumulation in two Alyssum Species. J. Environ. Qual., 33, 2090, 2004.
  • 19. Seregin I.V., Kozhevnikova A.D. Physiological role of nickel and its toxic effects on higher plants. Russ. J. Plant Physiol., 53, 257, 2006.
  • 20. Taká č P., Kozáková Ľ., Vaľková M., Zele ňák F. Heavy metals in soils in middle Spiš. Acta Montanistica Slovaca, 13, 82, 2008.
  • 21. KUKLA J., KUKLOVÁ M. Impact of long-term cultivation of spruce monocultues on development of forest soils. Beskydy, 4, 161, 2011.
  • 22. KUKLOVÁ M., KUKLA J., HNILIČKA F. The soil-toherbs transfer of heavy metal in spruce ecosystems. Pol. J. Environ. Stud., 19, 1263, 2010.
  • 23. KUKLOVÁ M., KUKLA J. Growth of Vaccinium myrtillus L. (Ericaceae) in spruce forests damaged by air pollution. Pol. J. Ecol., 56, 149, 2008.
  • 24. KUKLOVÁ M., KUKLA J. Transfer of risk elements in soil bilberry system. Ekológia (Bratislava), 32, 211, 2013.
  • 25. Markert B. Instrumental multielement analysis in plant materials, Série Tecnologia Ambiental 8, Rio de Janeiro, 1995.
  • 26. ZHONG M., WANG J., LIU K., WU R., LIU Y., WEI X., PAN D., SHAO X. Leaf morphology shift of three dominant species along altitudinal gradient in an alpine meadow of the Qinghai-Tibetan plateau. Pol. J. Ecol., 62, 639, 2014.
  • 27. Zlatn ík A. The survey of groups of types of geobiocoens originally forest and shrubby in the C.S.S.R. Zprávy Geografického ústavu ČSAV, 13, 55, 1976 [In Czech].
  • 28. Zlatn ík A. Forestry Phytocoenology , SZN Praha, 1976 [In Czech].
  • 29. Societas pedologica slovaca . Morphogenetic soil classification system of Slovakia. Basal reference taxonomy. NPPC – VUPOP Bratislava, 96, 2014 [In Slovak].
  • 30. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106, FAO, Rome, 193, 2015.
  • 31. Chojnacka K., Chojnacki A., Górecka H., Górecki H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ., 337, 175, 2005.
  • 32. Rossini Oliva S., Fernández Espinosa A.J. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem. J., 86, 131, 2007.
  • 33. Decision of the Ministry of Agriculture of the Slovak Republic on maximum allowable values of harmful substances in soil and on designation of organisations qualified to detect the real values of these substances, 531/1994-540. Bulletin of MP SR, 1994 [In Slovak].
  • 34. Jankiewicz B., Ptaszyński B. Determination of Chromium in Soil of Łódź Gardens. Pol. J. Environ. Stud., 14, 869, 2005.
  • 35. Duman F., Leblebici Z., Aksoy A. Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. BR.) exposed to cadmium, cobalt and chromium. Chem. Speciation Bioavail., 21, 257, 2009.
  • 36. Zayed A.M., Terry N. Chromium in the environment: factors affecting biological remediation. Plant Soil., 249,139, 2003.
  • 37. Ansari A.A, Gill S.S, Gill R., Lanza G.R., Newman L. (eds.). Phytoremediation: Management of Environmental Contaminants. Springer International Publishing Switzerland, 348, 2015.
  • 38. Bartlett R.J., Kimble J.M. Behaviour of chromium in soils: II. Hexavalent forms. J. Environ. Qual., 5, 383, 1976.
  • 39. Banks M.K., Schwab A.P., Henderson C. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62, 255, 2006.
  • 40. Shparyk Y.S., Parpan V.I. Heavy metal pollution and forest health in the Ukrainian Carpathians. Environ. Pollut., 130, 55, 2004.
  • 41. Wu Y., Hendershot W.H. The effect of calcium and pH on nickel accumulation in and rhizotoxicity to pea (Pisum sativum L.) root-empirical relationships and modeling. Environ. Pollut., 158, 1850, 2010.
  • 42. Weng L., Lexmond T.M., Wolthoorn A., Temminghoff E.J., van Riemsdijk W.H. Phytotoxicity and bioavailabilityof nickel: chemical speciation and bioaccumulation. Environ. Toxicol. Chem., 22, 2180, 2003.
  • 43. Mili ć D., Lukovi ć J., Ninkov J., Zeremski -Škori ć T., Zori ć L., Vasin J., Mili ć S. Heavy metal content in halophytic plants from inland and maritime saline areas. Cent. Eur. J. Biol., 7, 307, 2012.
  • 44. Bekteshi A., Bara G. Uptake of heavy metals from Plantago major in the Region of Durres, Albania. Pol. J. Environ. Stud., 22, 1881, 2013

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d1007c58-3bc8-4c96-a9b0-51fcc1078f23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.