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S u m m a r y

In recent years, many herbal plants and their active components have been tested in 
different models of neurodegenerative diseases. Some studies are focused rather on 
studies of chemical compounds of plant origin than on plant extracts. Several natural 
polyphenols (i.e. flawonoids) are known to exhibit wide spectrum of beneficial effects 
on brain functioning and to protect against neurodegenerative processes [1, 2]. It seems 
that influence on β-amyloid is a promising point of pharmacological action of these 
plant components, because this protein is a major biological risk factor contributing 
to Alzheimer’s disease (AD)-associated cascade including severe neuronal loss in the 
brain regions key for memory. In this review the attention is paid to studies on interest-
ing natural chemical compounds of flavonoids (i.g. luteolin, myricetin, icariin) which 
are a promising study material for research of the potential neuroprotective effects by 
decreasing the activity of β-secretase (BACE-1) leading to diminish the generation and 
deposition of β-amyloid (Aβ) in the central nervous system. This range is even more in-
teresting because plant polyphenols can be included in healthy diet and in multi-target 
drug therapy of neurodegererative diseases.
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1. LUTEOLIN

Chemical name and natural distribution 

Luteolin is 5, 7, 3’, 4’ – tetrahydroxyflavone [3]. According to UPAC, this com-
pound is named as 2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one [4].

Luteolin is one of the most common flavonoid present in different plants, espe-
cially as glycosides, for example as 8-C-glucoside (orientin), 6-C-glucosides (isoori-
entin), or 7-O-glucoside (cynaroside). Luteolin is widely distributed not only in 
many botanical families of Magnoliophyta, but also in Bryophyta, Pteridophyta 
and Pinophyta [5]. According to the review of Lopez-Lazata [5], this flavonoid and 
its glycosides occur in more than 213 species of plants, which are used as spice 
and also in traditional medicine. For example, luteolin has been found in Apium 
graveolens, Capsicum annuum, Capparis spinosa, Cucumis sativus, Cynara scolymus, 
Daucus carota, Fagopyrum esculentum, Mentha x piperita, Olea europaea, Origanum 
vulgare, Rosmarinus officinalis, Thymus vulgaris. Moreover, luteolin as an aglycone 
and/or as glycosides may also occur in very popular medicinal plants affecting 
the central nervous system for example Bacopa monieri, Ginkgo biloba, Hypericum 
perforatum (and H. brasiliense), Melissa officinalis, Passiflora incarnata (and P. edulis, P. 
caerulea, P. alata), Papaver rhoeas, Tanacetum parthenium, Vitex agnus-castus [5], and 
Centella asiatica [6].
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Figure 1. 
Chemical structure of luteolin

Biological and pharmacological activities

Numerous studies suggest that luteolin has potential for the prevention and 
treatment of several diseases. This flavonoid exerts anti-inflammatory [5, 7], anti-
microbial (antibacterial, antifungal) [5, 8], antioxidant [5, 9, 10] and anti-apoptotic 
activities [11, 12]. Moreover, it inhibits iodothyronine deiodinase, protein kinase 
C, NADH-oxidase, succinoxidase, lens aldose reductase [3]. Currently, an increas-
ing number of studies suggest that luteolin has cancer preventive and therapeutic 
potential [5] for example in cell lines of the human breast cancer [13], human 
cervical carcinoma [14], human colon cancer [14, 15], lung cancer [16, 17] and 
prostate carcinoma [18]. 

Neuroactivity

In recent years, some data are available suggesting that luteolin and its glyco-
sides interact with central nervous system cells (neurons and glial cells) and exert 
neuroprotective effects through different pathways. Results of in vitro study [19] 
showed that luteolin (isolated from the ripe seed of Perilla frutescens), significantly 
attenuated the increase in ROS production, markedly reversed hydrogen peroxide-
induced cytotoxicity in primary culture cortical neurons and enhanced neuronal 
cell survival with efficacy higher than and potency similar to vitamin E. In other 
study [20] it was shown that luteolin protected rat neural PC12 and glial C6 cells 
from N-methyl-4-phenyl-pyridinium (MPP+) against toxicity induced in vitro via 
activation of the nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription 
factor involved in the maintenance of the cellular redox homeostasis. Moreover, 
the neuroprotective effect of luteolin was observed in rat model of focal cerebral 
ischemia induced by permanent middle cerebral artery occlusion. It was shown 
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that luteolin (10 or 25 mg/kg, i.p.) administered after ischemia protected the brain 
against damage through oxidative stress and apoptosis reduction, and increased 
the activities of superoxide dismutase 1 (SOD1), CAT, Bcl-2 and claudin-5 [21]. It 
was also found out that the systemic administration of luteolin decreased neu-
rologic impairment, and this effect may be through downregulation of toll-like 
receptors (TLR4, TLR5), nuclear factor-κB (NF-κB), mitogen-activated protein ki-
nases (p38MAPK) and upregulation of extracellular signal-regulated kinase (ERK) 
expression [22]. Moreover, Qiao et al. [22] observed that luteolin reduced the 
neurologic deficit scores, brain edema and infarct volume after ischemia. They 
concluded that luteolin exerts its neuroprotective effect not only by antioxidant 
activity but also by anti-inflammatory property because luteolin affects the genes 
involved in immune responses. Similarly, the other studies demonstrated that lu-
teolin decreased the release of pro-inflammatory cytokines in cultured microglia 
[23, 24]. Recent report has also confirmed that luteolin shows an antidepressant-
like effect (50 mg/kg/d) in corticosterone-induced depression in mice model [25]. 
Moreover, it was demonstrated that luteolin (50, 150 and 450 mg/kg, p.o.) showed 
an enhancement of a basal synaptic transmission and facilitation of an induction 
of long-term potentiation (LTP) in the dental gyrus of rat hippocampus in chronic 
cerebral hypoperfused rats [26]. This results allowed to state that luteolin not 
only can attenuate the cognitive deficits but also improve the synaptic plasticity 
in rats.

Anti-amyloid activity

Up to day, several studies were performed to investigate the impact of luteo-
lin on gene expression and activity of β-secretase (BACE-1). More studies were 
focused on how luteolin affects the Aβ-induced neurotoxicity. Choi et al. [27] 
showed that luteolin isolated from the methanolic extract of Perilla frutescens var. 
acuta exerted an inhibition of BACE-1 with IC50 values of 5.0 x 10(-7) M. This activ-
ity was higher than result observed for rosmarinic acid (IC50=2.1 x 10(-5) M). Oth-
er, very detailed studies [23, 28, 29] performed on SweAPP N2a cells and primary 
neuronal cells derived from transgenic Tg2576 mice allowed to state that luteolin 
exerted the antiamyloidogenic effects through inhibiting two forms of β-amyloid 
Aβ1-40,42 generation (with >70% and >85% reductions at treatment concentra-
tions of 20 and 40 μM, respectively) by reducing γ-secretase activity. Another 
study [30] demonstrated that luteolin isolated from Elsholtzia rugulosa exerted its 
neuroprotective effects on copper-induced neurotoxicity in the Aβ precursor pro-
tein Swedish mutation stably overexpressing SH-SY5Y cells. Their positive results 
showed the decreasing expression of Aβ precursor protein (AβPP) and lowering 
of the secretion of Aβ1-42 observed after administration of luteolin. They also 
observed that luteolin increased cell viability and the activity of SOD and reduced 
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the release of reactive oxygen species (ROS). Cheng et al. [12] showed in cultured 
rat cortical neurons with Aβ-induced toxicity that pretreatment with luteolin de-
creased apoptotic neuronal death by inhibiting the release of pro-inflammatory 
mediators. It is known that luteolin significantly inhibited the activation of the 
caspase-3 and could modulate mitogen-activated protein kinases which are key 
pathways in neuronal apoptosis [11]. Neuroprotective effect of luteolin on rat 
cerebral microvascular endothelial cells was also observed using in vitro model 
of Aβ25-35 - induced toxicity [31]. In vivo studies performed in animals with Aβ-
induced cognition deficit showed that luteolin treatment improved the learning 
and memory processes both in rats (5, 10 mg/kg, p.o.) [32] and mice (5, 10 mg/kg, 
p.o.) [33]. It was also shown that luteolin increased the regional cerebral blood 
flow values and the brain-derived neurotrophic factor level [33]. Furthermore, it 
was discovered that this flavonoid administered in mice improved the cholinergic 
neuronal system activity through inhibition of acetylcholinesterase activity and 
increased an acetylcholine level in cerebral cortex [33]. Moreover, it was observed 
that luteolin also increased the level of SOD and glutathione (GSH) in cortex and 
hippocampus of rats [32]. 

2. Myricetin

Chemical name and natural distribution 

Myricetin is a 3,5,7,3’,4’,5’-hexahydroxyflavone [3]. According to UPAC, this 
compound is named as 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)chromen-4-
one [34].

Myricetin occurs free in the heartwood of Soymidia febrifuga (Meliaceae) and 
the aerial parts of Haplopappus canescens (Compositeae). Glycosides of myrice-
tin are widespread, e.g. the 3-glucoside occurs in the petals of Primula sinensis 
(Primulaceae), the 3-galactoside in the leaves of Camellia sinensis (Theaceae), and 
the 3-arabinoside in the berries of Vaccinium macrocarpon (Ericaceae) [3]. Myric-
etin was also found in stem bark of Myrica esculenta Buch. Ham. Ex D. Don, 
[35], and in bark of Myrica rubra Sieb. et Zucc. (Myricaceae) [36]. Myricetin was 
also detected in Epilobium hirsutum [9] and in extract of Vitis vinifera L. raisins 
[37]. In recent years phytochemical analysis carried out by Sultan and Anwar 
[38], showed that myricetin is contained in highest amounts in Spinacia oleracea 
(leaf) > Brassica oleracea (flower) > Daucus carota (root) > Brassica rapa (root) > 
Pisum sativum (seed). Moreover, myricetin occurs in fruits of Prunus salicin and 
Fragaria ananassa, and also the highest level of myricetin was detected in leaves 
of Moringa oleifera and of Aloe barbadensis, in fruits of Ficus religiosa, and in bark 
of Acacia nilotica [38]. 
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Figure 2. 
Chemical structure of myricetin 

Biological and pharmacological activities

Earlier studies showed that myricetin exhibited testosterone 5a-reductase 
inhibitory activity and produced a significant anti-androgenic effect [36]. Other 
reports showed that myricetin possessed also a strong antigonadotropic prop-
erties and inhibited lipooxygenase, NADH-oxidase, succinoxydase activities [3]. 
Currently, myricetin is classified as a flavonoid which exerts strong antioxidant 
effects [39, 40]. 

Neuroactivity

Relatively new investigations allowed to state that myricetin showed neuropro-
tective properties via anty-amyloid and anti-secretase mechanism of action [39-
41]. It was also shown that this compound produced neuroprotective effects in 
some Parkinson models thorough its antioxidant and antiapoptotic activity [42]. 
Moreover, myricetin exhibited a significant anxiolytic activity in behavioral mod-
els of anxiety by modifying serotonin transmission [37]. 

Anti-amyloid activity

Shimmyo et al. [39] used in vitro model of neurotoxicity to elucidate the effect of 
myricetin on secretion of β-amyloid and secretase activity. The cultured rat primary 
cortical neurons were treated with Aβ1–42 (1 μM) for 48 h. Obtained results allowed 
to state that myricetin in a concentration of 10 μM significantly decreased the Aβ1–
40 and the Aβ1–42 level in culture. Moreover, the aggregation of Aβ1–42 to 65.2% 
was inhibited by myricetin at 1 μM, and at 10 μM. The results showed that myricetin 
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(10 μM, 48 h) reduced BACE1 activities of neuronal cells by 75% and IC50 was 2.8 
μM. It was also shown that α-secretase activity in neuronal cells was increased by 
myricetin administration in a concentration-dependent manner. Another study of 
these authors [40] showed during the cell-free BACE-1 enzyme activity assay that 
not only myricetin but also quercetin, kaempherol, morin and apigenin directly in-
hibited BACE-1 enzymatic activity in a concentration dependent manner and values 
of IC50 were as follows: myricetin (2.8 μM) < quercetin (5.4 μM) < kaempherol 
(14.7 μM) < morin (21.7 μM) < apigenin (38.5 μM). Although, in the next step 
of this study it was shown that BACE-1 activity in neuronal cells was significantly 
decreased only after administration of myricetin and quercetin. Similarly, only this 
two flavonoids (after 24 h administration in neuronal culture at 20 uM) significantly 
decreased both Aβ1-40 and Aβ1-42 levels. Further study carried out by Wang and 
JiJi [41] with use of various spectroscopic methods such as circular dichroism (CD) 
and thioflavin T (ThT) fluorescence assay confirmed that myricetin inhibited Aβ for-
mation of hydrophobic fragment, Aβ25–40, as well as Aβ1–42. Moreover, CD and 
ultraviolet resonance Raman (UVRR) studies indicated that myricetin induced the 
conformational change in both Aβ25–40 and Aβ1–42, suggesting that hydropho-
bic or backbone interactions may contribute to Aβ-flavonoid binding. It was stated 
that myricetin produced interaction with soluble Aβ via two mechanisms, associa-
tion with hydrophobic C-terminal region and interactions with the aromatic side 
chains. Results of another study [43] with using molecular docking analysis allowed 
to state that myricetin interacts with the aspartate dyad by hydrogen bonding thus 
displacing the water molecule located between the aspartic acid pairs of Asp32 and 
Asp228 of BACE-1.

3. ICARIIN

Chemical name and natural distribution 

Icariin (C33H40O15) is classified to a flavonoids (main class) and also to a fla-
vonol (sub class) According to UPAC, this compound is named as 5-hydroxy-2-
(4-methoxyphenyl)-8-(3-methylbut-2-enyl)-7-[(2S,4S,5S)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy-3-[(2S,3S,5R)-3,4,5-trihydroxy-6-methyloxan-2-yl]
oxychromen-4-one [44]. 

The icariin is the major pharmacological active flavonoid which occurs in aerial 
parts of different plants from Epimedium species, for example of Epimedium brevi-
cornum Maxim. [45], E. sagittatum Maxim. [46], E. pubescens Maxim. and E. wusha-
nense T.S.Ying [47]. The largest number of species of Epimedium is found in China 
[47] but some are distributed in Japan, Europe, North Africa, India and Korea [49]. 
Nowadays, more than 141 flavonoids from 17 Epimedium species which belong to 
the family Berberidaceae [49] have been found.
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Figure 3. 
Chemical structure of icariin 

Biological and pharmacological activities

Several studies showed that bio-compounds of Epimedii herba increased the ac-
tivity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione 
peroxidase (GSH-Px) and showed activity as free radicals scavengers. Moreover, 
icariin exerted protective activity against radical induced damage to DNA and per-
oxidation of polyunsaturated fatty acids [50]. It was also shown that flavonoids 
of Epimedium had protective effect against acute myocardial ischemia in rats [51]. 
According to recent review [49] modern preclinical pharmacological studies and 
clinical trials demonstrated that Epimedium extracts and their active compounds 
showed not only anti-oxidative properties but also possess wide pharmacological 
actions i.e. hormone regulation, anti-osteoporosis, immunological function mod-
ulation, as well as anti-tumor, anti-aging, anti-atherosclerosis, anti-hypertensive 
and anti-depressant activities. Moreover, in traditional Chinese medicine, icariin 
is used widely for the treatment of neurological diseases [52]. 

Neuroactivity

In recent years a neuroprotective effect of icariin in different pharmacological 
models [46, 52-59] was shown. Wang et al. [53] showed that this flavonoid pro-
duced neuroprotective effect against toxicity induced with Aβ25-35 in primary 
cultured rat cortical neuronal cells (from embryonic rat fetuses). It was observed 
that pretreatment with icaritin (0.1 μM) significantly reduced A-25-35-induced 
cell death by 90%, although, co-treatment with icaritin showed lower potency in 
this area. Moreover, co-treatment with estrogen receptor antagonist significantly 
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blocked neuroprotective effects of icaritin. Authors suggested that neuroprotec-
tive effect of icariin was coupled with binding to estrogen receptor and, therefore, 
this antagonistic-like action is the potential mechanism of its neuroprotective ac-
tivity. In another study, Zeng et al. [58] investigated the inhibitory effect of icariin 
on PC12 cells with Aβ25-35-induced tau protein hyperphosphorylation, which is 
one of the most representative hallmarks in AD. Results of this study showed that 
icariin application significantly decreased Aβ25-35-induced cytotoxicity and apop-
tosis rate through inhibiting tau protein hyperphosphorylation. Sha et al. [55] 
showed also that icariin (160 μg/ml) inhibited Aβ42-induced neurotoxicity in vitro. 
Moreover, Zeng et al. [58] concluded that icariin may activate PI3K/Akt signaling 
pathway, resulting in an inhibitory effect on glycogen synthase kinase (GSK)-3β 
which is an important kinase included in tau protein hyperphosphorylation in 
pathogenesis of AD. Liu et al. [46] demonstrated also the neuroprotective effects 
of icariin against corticosterone-induced apoptosis examined in primary cultured 
rat hippocampal neuronal cells. It was observed that pre-treatment of neuronal 
cells with icariin suppressed corticosterone-induced cytotoxicity in a dose-depen-
dent manner and western blot analysis showed that icariin blocked p38 MAPK 
phosphorylation. Moreover, Urano and Tohda [59] showed that icariin recovered 
Aβ1-42-induced neurite atrophy, when the icariin (0.01 μM) was administered 3 
days after treatment with Aβ. 

Anti-amyloid activity

Several studies have shown an interesting anti-amyloid activity [54, 56, 59]. In 
one of these studies, icariin was administered at the dosages of 30, 60 or 120 mg/
kg for 14 days to Wistar rats which were unilaterally injected with Aβ25–35 (10 
μg) into right hippocampus [56]. Results of Morris water maze test indicated that 
flavonoid in the dosages of 60 and 120 mg/kg significantly improved the spatial 
learning and memory ability. Moreover, the real-time RT-PCR analysis showed that 
after the treatment with icariin the overexpression of BACE1 in rat’s hippocampus 
induced by Aβ25–35 was significantly decreased [56]. Neuroprotective effect of 
icariin was also found in another animal model. Urano and Tohda [59] demonstrat-
ed that administration of icariin (50 mmol/kg) for 8 days (p.o.) improved spatial 
memory impairment in transgenic mouse AD model (5xFAD - overexpression neu-
ronspecific transgenes with five mutations). Moreover, it was shown in the Morris 
water maze that icariin significantly reduced the escape latency in 5xFAD mice, 
but object recognition memory and object location memory were sufficiently en-
hance by icariin (50 μmol/kg) only in the normal mice. According to authors, these 
novel findings suggest that icariin may improve memory dysfunction in AD and 
have a potential to extend Aβ-induced neurite atrophy. In another study, Luo et 
al. [54] examined the protective effects of icariin (60 and 120 mg/kg, by gavage 
for 3 months) against learning and memory deficits in aluminium-treated rats. 
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Their results showed that icariin dose-dependently protected against the devel-
opment of aluminium-induced spatial learning and memory deficits (Morris water 
maze). Moreover, it was shown that icariin significantly increased SOD activity and 
decreased malondialdehyde (MDA) and Aβ1-40 content in the hippocampus of 
aluminium-treated rats. These studies allowed to state that icariin may be promis-
ing option for the prevention of neurodegenerative processes.

CONCLUSION

In summary, this review showed that luteolin, myricetin and icariin occurring in 
many well-known plants, exerted their neuroprotective effects in different both in 
vitro and in vivo models. The most amounts of studies in neurodegeneration mod-
els were performed for luteolin, which is a component of spices, vegetables and 
medicinal plants. Taken together, luteolin exerts wide spectrum of neurobiologi-
cal activities in models with using beta-amyloid as neurotoxin. Neuroprotective 
properties of luteolin may occur by increasing neuronal cell viability because this 
flavonoid inhibits the β-sercetase (BACE-1) activity and may lead to down-regula-
tion the β-amyloid precursor protein (AβPP) expression and diminish the secre-
tion of Aβ1-42. What more, luteolin may also inhibit acetylcholinesterase activity 
and improve the impairment of learning and memory performance induced by 
Aβ. Mechanism of action of luteolin may involve the decrease neuronal apoptosis 
by inhibiting the release of pro-inflammatory mediators and by reducing the re-
lease of reactive oxygen species. Therefore, luteolin is considered as a molecule 
to possible prevention of neurodegenerative diseases as multiple sclerosis [60], 
Alzheimer’s disease, Parkinson disease, cerebral ischemia as well as for improving 
brain functions during aging [19]. It was also presented that in addition to strong 
antioxidant activity, myrricetin may influence on amyloidogenesis. It was observed 
that this flavonoid inhibited aggregation of Aβ1–42 and reduced BACE1 activity in 
neuronal cells. On the other hand, also icariin showed neuroprotective effect, not 
only by decreasing Aβ-induced cytotoxicity and apoptosis, but also by improving 
the learning and memory deficit in animal models for Alzheimer’s disease. This 
effect might be caused by the inhibitory effect of icariin on BACE1 gene expres-
sion. According to several authors, these flavonoids will be great potential pre-
ventive and therapeutic agents for neurodegenerative processes in ageing brain. 
The more it becomes interesting because of the opinion that a diet enriched in 
flavonoids may influence the incidence and onset not only of cardiovascular dis-
eases but also of neurodegenerative disorders, and plant-derived flavonoids may 
improve age-related impairment of memory and learning [2, 61-63]. However, it 
should be stressed that there is a need to perform further pharmacological and 
especially clinical studies in this area. 
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S t r e s z c z e n i e

W ostatnich latach liczne rośliny lecznicze, a także ich związki czynne bada się w różnych 
modelach chorób neurodegeneracyjnych. Coraz częściej badania koncentrują się bardziej 
na ocenie związków chemicznych pochodzenia roślinnego niż na badaniu ekstraktów 
roślinnych. Poznano kilka naturalnych związków polifenolowych (m.in. flawonoidy), które 
wykazują szerokie spektrum korzystnego wpływu na funkcjonowanie mózgu oraz w as-
pekcie aktywności cytoprotekcyjnej, zapobiegającej procesom neurodegeneracyjnym. 
Wydaje się, że obiecującym punktem uchwytu działania farmakologicznego tych związków 
roślinnych jest wpływ na β-amyloid, gdyż białko to jest ważnym czynnikiem ryzyka, istot-
nie przyczyniającym się do zachodzenia kaskady procesów prowadzących do choroby Al-
zheimera, a w tym do utraty neuronów w najważniejszych dla pamięci regionach mózgu. 
W artykule przeglądowym zwraca się uwagę na badania poświecone interesującym 
związkom chemicznym z grupy flawonoidów (np. luteolina, myricetyna, ikaryna), które są 
obiecującym materiałem badawczym nad potencjalnymi działaniami neuroprotekcyjnymi 
poprzez obniżanie aktywności β-sekretazy (BACE-1), co może doprowadzić do zmniejsza-
nie powstawania i odkładania β-amyloidu (Aβ) w ośrodkowym układzie nerwowym. Zakres 
tych badań jest jeszcze bardziej interesujący, gdyż polifenole roślinne mogą być zawarte w 
zdrowej diecie oraz mogą być włączane do złożonej terapii chorób neurodegeneracyjnych. 
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