Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 1 |
Tytuł artykułu

Toxicity of MCPA on non-gren potato tuber calli

Treść / Zawartość
Warianty tytułu
Języki publikacji
Growth of potato tuber calli cells (non-green) is inhibited by 4-chloro-2-methylphenoxyacetic acid (MCPA) as a consequence of perturbation of membrane integrity. MCPA also depresses ATP content with simultaneous increase of ADP and AMP, i.e., the energy charge is severely compromised. Cell redox state is also affected by MCPA, as a function of concentration. Up to 60 µM, MCPA stimulates glutathione reductase and glutathione transferase, whereas superoxide dismutase and catalase activities are not affected. However, 120 µM MCPA inhibits all these activities. Cell death challenged by MCPA is putatively related to disturbance of membrane integrity responsible for mitochondrial uncoupling with decrease of the energy charge and subsequent loss of ions and metabolites.
Słowa kluczowe
Opis fizyczny
  • Chemistry Department, CECAV, University of Tras-os-Montes and Alto Douro, P.O. Box 1013, 5000-911 Vila Real, Portugal
  • Department of Botany, IMAR, Interdisciplinary Center of Coimbra, University of Coimbra, 3001-455 Coimbra, Portugal
  • Department of Biochemistry, University of Coimbra, 3004-517 Coimbra, Portugal
  • Department of Botany, IMAR, Interdisciplinary Center of Coimbra, University of Coimbra, 3001-455 Coimbra, Portugal
  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, New York
  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
  • Bellet EM, van Ravenzwaay B, Hellwig J, Pigott G (2001) Reproductive toxicity of MCPA (4-chloro-2-methylphenoxyacetic acid) in the rat. Int J Toxicol 20:29–38. doi:10.1080/109158101750103378
  • Bitton G (1999) Toxicity testing in wastewater treatment plants using microorganisms. In: Mitchell R (ed) Wastewater microbiology. Wiley series in ecological and applied microbiology. Wiley, New York, pp 413–426
  • Bitton G, Koopman B (1992) Bacterial and enzymatic bioassays for toxicity testing in the environment. Rev Environ Contam Toxicol 125:1–22
  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76) 90527-3
  • Bukowska B (2006) Toxicity of 2, 4-dichlorophenoxyacetic acid––molecular mechanisms. Pol J Environ Stud 15:365–374
  • Bukowska B, Goszczynska K, Duda W (2003) Effect of 4-chloro-2-methylphenoxyacetic acid and 2, 4-dimethylphenol on human erythrocytes. Pestic Biochem Physiol 77:92–98. doi:10.1016/j.pestbp.2003.08.006
  • Cabral MG, Viegas CA, Teixeira MC, Sá-Correia I (2003) Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population. Chemosphere 51:47–54. doi:10.1016/S0045-6535(02)00614-8
  • Camatini M, Colombo A, Bonfanti P, Doldi M, Urani C, Dibisceglia M et al (1996) In vitro biological systems as models to evaluate the toxicity of pesticides. Int J Environ Anal Chem 65:153–167. doi:10.1080/03067319608045551
  • Camatini M, Bonfanti P, Colombo A, Urani C (1998) Molecular approaches to evaluate pollutants. Chemosphere 37:2717–2738. doi:10.1016/S0045-6535(98)00316-6
  • Ebing W, Haque A, Schuphan I, Harms H, Langebartels C, Scheel D et al (1984) Ecochemical assessment of environmental chemicals-draft guideline of the test procedure to evaluate metabolism and degradation of chemicals by plant-cell cultures. Chemosphere 13:947–957. doi:10.1016/0045-6535(84)90169-3
  • Fargasova A (1994) Comparative study of plant growth hormone (herbicide) toxicity in various biological subjects. Ecotoxicol Environ Saf 29:359–364. doi:10.1016/0147-6513(94)90008-6
  • Forman HJ, Fridovich I (1973) Superoxide dismutase––comparison of rate constants. Arch Biochem Biophys 158:396–400. doi: 10.1016/0003-9861(73)90636-X
  • Guilbault GG, Kramer DN (1964) Fluorometric determination of lipase acylase α-and β-chymotrypsin and inhibitors of these enzymes. Anal Chem 36:409–412. doi:10.1021/ac60208a052
  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases–– first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139
  • Harms H (1992) In-vitro systems for studying phytotoxicity and metabolic fate of pesticides and herbicides in plants. Pestic Sci 35:277–281. doi:10.1002/ps.2780350313
  • Hatton PJ, Cummins I, Price LJ, Cole DJ, Edwards R (1998) Glutathione transferases and herbicide detoxification in suspension-cultured cells of giant foxtail (Setaria faberi). Pestic Sci 53:209–216. doi:10.1002/(SICI)1096-9063(199807)53:3<209:: AID-PS762>3.0.CO;2-M
  • Hopkins WG (1999) Auxins: introduction to plant physiology
  • Kobal S, Budihna MV (1999) Toxicity of herbicides 2, 4-D and MCPA for rats and rabbits. Acta Vet (Brno) 68:281–290
  • Magalhães MJA, Ferreira JR, Frutuoso L, Taı´nha A (1989) Study of the disappearance of endosulfan, parathion, trichlorfon and pirimicard from broccoli and portuguese cabbage. Pestic Sci 27:23–31. doi:10.1002/ps.2780270104
  • Mayer P, Kuhel R, Nyholm N (1997) A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Res 31:2525–2531. doi:10.1016/S0043-1354(97) 00084-5
  • Montezuma CJ, Guimarães ML (1976) Isolation of callus from potato roots. Bol Soc Brot ser 2:265–271
  • Mumma RO, Davidonis GH (1983) Plant tissue culture and pesticide metabolism. In: Hutson DH, Roberts R (eds) Progress in pesticide biochemistry and toxicology. Wiley, Chichester, pp 255–274
  • Nellessen JE, Fletcher JS (1993) Assessment of published literature pertaining to the uptake/accumulation, translocation, adhesion and biotransformation of organic chemicals by vascular plants. Environ Toxicol Chem 12:2045–2052. doi:10.1897/1552-8618 (1993)12[2045:AOPLPT]2.0.CO;2
  • Palmeira CM (1999) Herbicide-induced mitochondrial and cellular liver toxicity: a review of paraquat, dinoseb, and 2, 4-D effects. Toxic Subst Mech 18:187–204. doi:10.1080/107691899229070
  • Peixoto FP, Gomes-Laranjo J, Vicente JA, Madeira VMC (2008) Comparative effects of the herbicides Dicamba, 2, 4-D and paraquat on non-green potato tuber calli. J Plant Physiol 165:1125–1133. doi:10.1016/j.jplph.2007.12.013
  • Persidsky MD, Baillie GS (1977) Fluorometric test of cell-membrane integrity. Cryobiology 14:322–331. doi:10.1016/0011-2240(77) 90179-1
  • Pritchard JB, Krall AR, Silverthorn SU (1982) Effects of anionic xenobiotics on rat kidney I. Tissue and mitochondrial respiration. Biochem Pharmacol 31:149–155. doi:10.1016/0006-2952 (82)90204-0
  • Prosperi E (1990) Intracellular turnover of fluorescein diacetate Influence of membrane ionic gradients on fluorescein efflux. Histochem J 22:227–233. doi:10.1007/BF02386009
  • Regel RH, Ferris JM, Ganf GG, Brookes JD (2002) Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquat Toxicol 59:209–223. doi:10.1016/S0166-445X(01)00254-5
  • Sandermann H, Scheel D, Vandertrenck T (1984) Use of plant-cell cultures to study the metabolism of environmental chemicals. Ecotoxicol Environ Saf 8:167–182. doi:10.1016/0147-6513(84) 90059-9
  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012
  • Smeda RJ, Weller SC (1991) Plant-cell and tissue-culture techniques for weed science research. Weed Sci 39:497–504
  • Stocchi V, Cucchiarini L, Magnani M, Chiarantini L, Palma P, Crescentini G (1985) Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124. doi:10.1016/0003-2697(85)90405-1
  • van Ravenzwaay B, Pigott G, Leibold E (2004) Absorption, distribution, metabolism and excretion of 4-chloro-2-methylphenoxyacetic acid (MCPA) in rats. Food Chem Toxicol 42:115–125. doi:10.1016/j.fct.2003.08.017
  • van Ravenzwaay B, Mellert W, Deckardt K, Kuttler K (2005) The comparative toxicology of 4-chloro-2-methylphenoxyacetic acid and its plant metabolite 4-chloro-2-carboxyphenoxyacetic acid
  • in rats. Regul Toxicol Pharmacol 42:47–54. doi:10.1016/j.yrtph. 2005.01.003
  • Viegas CA, Almeida PF, Cavaco M, Sá-Correia I (1998) The H⁺- ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl Environ Microbiol 64:779–783
  • Zychlinski L, Zolnierowicz S (1990) Comparison of uncoupling activities of chlorophenoxy herbicides in rat liver mitochondria. Toxicol Lett 52:25–34. doi:10.1016/0378-4274(90)90162-F
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.