PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Disinfecting poultry slaughterhouse wastewater using copper electrodes in the electrocoagulation process

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Insufficiencies and deficiencies in slaughterhouses could adversely affect public health. Wastewater from slaughtering, along with high microbial pollution, results in serious pollution to the surrounding environment if not treated. This study sought to investigate the efficiency of the electrocoagulation process using copper electrodes in the disinfection of poultry slaughterhouse wastewater without any initial controlling. The physical and chemical properties of samples of wastewater taken from a poultry slaughterhouse were first analyzed. Then the samples were subjected to the electrocoagulation process using copper electrodes in potential differences of 10, 20, and 30 V over a period of 60 min. Then the removal efficiency of total coliforms was examined in accordance with standard methods found in textbooks. The results obtained from this study indicated that the efficiency of the electrocoagulation process increased by an increase in process time as well as in electric potential difference. The maximum removal efficiency of total coliforms was 100% in potential difference, equal to 30 V in the reaction time of 10 min. Moreover, the results of this study revealed that the electrocoagulation process using a copper electrode was fully able to remove total coliform from poultry slaughterhouse wastewater.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1907-1912,fig.

Twórcy

autor
  • Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
autor
  • Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
autor
  • Department of Environmental Health Engineering, School of Health, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
autor
  • Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Department of Environmental Health Engineering, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
autor
  • Department of Environmental Health Engineering, School of Public Health, Iranshahr University of Medical Sciences, Iranshahr, Iran
autor
  • Department of Environmental Health Engineering, Faculty of Public Health, North Khorasan University of Medical sciences, Bojnurd, Iran
autor
  • Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
  • Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
autor
  • Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
autor
  • Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
  • Research Center in Emergency and Disaster Health, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

Bibliografia

  • 1. BIGLARI H., SAEIDI M., NAROOIE M.R., ALIPOUR V., SOHRABI Y., KHAKSEFIDI R., RAHDAR S., ZAREI A., AHAMADABADI M. Survey on the quantity of hazardous wastes generated in Isfahan medical centers,Iran. ., Int. J. Pharm. Technol. 8, 17872, 2016.
  • 2. BIGLARI H., ZAREI A., SOHRABI Y., CHARGANEH S.S., DABIRIAN M., JAVAN N. An analysis of Kashan municipal solid waste, Iran. Res. J. Appl. Sci. 11, 554, 2016.
  • 3. ALIPOUR V., REZAEI L., ETESAMIRAD M.R., RAHDAR S., NAROOIE M.R., SALIMI A., HASANI J., KHAKSEFIDI R., SADAT S.A., BIGLARI H. Feasibility and applicability of solar disinfection (SODIS) for point-ofuse water treatment in Bandar Abbas, South of Iran. J. Glob. Pharma Technol. 9, 40, 2017.
  • 4. BAYAR S., YILDIZ Y., YILMAZ A., KOPARAL A.S. The effect of initial pH on treatment of poultry slaughterhouse wastewater by electrocoagulation method. Desalin. Water Treat. 52, 3047, 2014.
  • 5. AHAMADABADI M., SAEIDI M., RAHDAR S., NAROOIE M.R., SALIMI A., ALIPOUR V., KHAKSEFIDI R., BANESHI M.M., BIGLARI H. Assessment of the chemical quality of groundwater resources in Chabahaar City using GIS software in 2016. Res. J. Appl. Sci. 11, 1399, 2016.
  • 6. OZYONAR F., KARAGOZOGLU B. Investigation of technical and economic analysis of electrocoagulation process for the treatment of great and small cattle slaughterhouse wastewater. Desalin. Water Treat. 52, 74, 2014.
  • 7. ORSSATTO F., FERREIRA TAVARES M.H., MANENTE DA SILVA F., EYNG E., FARIAS BIASSI B., FLECK L. Optimization of the pretreatment of wastewater from a slaughterhouse and packing plant through electrocoagulation in a batch reactor. Environ. Technol. 1, 2016.
  • 8. HERNÁNDEZ-RAMÍREZ D.A., HERRERA-LÓPEZ E.J., RIVERA A.L., DEL REAL-OLVERA J. Artificial neural network modeling of slaughterhouse wastewater removal of COD and TSS by electrocoagulation. Adv. Trends Soft Comput. Springer; 273, 2014.
  • 9. KHOSA M.K., JAMAL M.A., ZIA K.M., SAIF M.J., BOKHARI T.H., RAZA M. Treatment of Cattle Slaughter House Wastewater by Electrocoagulation Method Using Aluminium Electrodes. Asian J. Chem. 26, 6335, 2014.
  • 10. RODRÍGUEZ ABALDE Á. Anaerobic digestion of animal by-products: pre-treatments and co-digestion. 2013.
  • 11. MESDAGHINIA A., AKHAVAN M.P., VAEZI F., NADDAFI K., MOOSAVI G. Waste sludge characteristics of a wastewater treatment plant compared with environmental standards. Iran. J. Public Health. 33, 5, 2004.
  • 12. COSKUN T., DEBIK E., KABUK H.A., MANAV DEMIR N., BASTURK I., YILDIRIM B., TEMIZEL D., KUCUK S. Treatment of poultry slaughterhouse wastewater using a membrane process, water reuse, and economic analysis. Desalin. Water Treat. 57, 4944, 2016.
  • 13. MORADI M., SAFARI Y., BIGLARI H., GHAYEBZADEH M., DARVISHMOTEVALLI M., FALLAH M., NESARI S., SHARAFI H. Multi-year assessment of drought changes in the Kermanshah city by standardized precipitation index. Int. J. Pharm. Technol. 8, 17975, 2016.
  • 14. SAHU O., MAZUMDAR B., CHAUDHARI P. Treatment of wastewater by electrocoagulation: a review. Environ. Sci. Pollut. Res. 21, 2397, 2014.
  • 15. STOŠIĆ M., ČUČAK D., KOVAČEVIĆ S., PEROVIĆ M., RADONIĆ J., SEKULIĆ M.T., MILORADOV M.V., RADNOVIĆ D. Meat industry wastewater: microbiological quality and antimicrobial susceptibility of E. coli and Salmonella sp. isolates, case study in Vojvodina, Serbia. Water Sci. Technol. 73, 2509, 2016.
  • 16. RAHDAR S., AHAMADABADI M., KHAKSEFIDI R., SAEIDI M., NAROOIE M.R., SALIMI A., BIGLARI H., BANESHI M.M. Evaluation of phenol removal from aqueous solution by banana leaf ash. J. Glob. Pharma Technol. 9, 20, 2017.
  • 17. BIGLARI H., SAEIDI M., ALIPOUR V., RAHDAR S., SOHRABI Y., KHAKSEFIDI R., NAROOIE M.R., ZAREI A., AHAMADABADI M. Review on hydrochemical and health effects of it in Sistan and Baluchistan groundwater’s,Iran. Int. J. Pharm. Technol. 8, 17900, 2016. 18. PAN M., HENRY L.G., LIU R., HUANG X., ZHAN X. Nitrogen removal from slaughterhouse wastewater through partial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 11 C. Environ. Technol. 35, 470, 2014.
  • 19. SAEIDI M., BIGLARI H., RAHDAR S., BANESHI M.M., AHAMADABADI M., NAROOIE M.R., SALIMI A., KHAKSEFIDI R. The adsorptive acid orange 7 using Kenya tea pulps ash from aqueous environments. J. Glob. Pharma Technol. 9, 13, 2017.
  • 20. RAHDAR S., KHAKSEFIDI R., ALIPOUR V., SAEIDI M., NAROOIE M.R., SALIMI A., BIGLARI H., BANESHI M.M., AHAMADABADI M. Phenol adsorptive by cumin straw ash from aqueous environments. IIOAB J. 7, 536, 2016.
  • 21. KHAKSEFIDI R., BIGLARI H., RAHDAR S., BANESHI M.M., AHAMADABADI M., NAROOIE M.R., SALIMI A., SAEIDI M., ALIPOUR V. The removal of phenol from aqueous solutions using modified saxaul ASH. Res. J. Appl. Sci. 11, 1404, 2016.
  • 22. PÁRAMO-VARGAS J., GRANADOS S.G., MALDONADO-RUBIO M., PERALTA-HERNÁNDEZ J.M. Up to 95% reduction of chemical oxygen demand of slaughterhouse effluents using Fenton and photo-Fenton oxidation. Environ. Chem. Lett. 14, 149, 2016.
  • 23. BIGLARI H., AFSHARNIA M., ALIPOUR V., KHOSRAVI R., SHARAFI K., MAHVI A.H. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environ. Sci. Pollut. Res. Int. 24, 4105, 2017.
  • 24. HAKIZIMANA J.N., GOURICH B., CHAFI M., STIRIBA Y., VIAL C., DROGUI P., NAJA J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination. 404, 1, 2017.
  • 25. BARRERA-DÍAZ C.E., FRONTANA-URIBE B.A., ROA-MORALES G., BILYEU B.W. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide. J. Environ. Sci. Heal. Part A. 50, 406, 2015.
  • 26. WHEELDON L., WORTHINGTON T., LAMBERT P.A., HILTON A., LOWDEN C., ELLIOTT T.S. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J. Antimicrob. Chemother. 62, 522, 2008.
  • 27. FEDERATION W.E., ASSOCIATION A.P.H. Standard methods for the examination of water and wastewater. Am. Public Heal. Assoc. Washington, DC, USA. 2005.
  • 28. AFSHARNIA M., KIANMEHR M., BIGLARI H., RAMEZANI M., RASOULI S. Coliform Removal from Municipal Waste Fresh Leachate Using Electrolysis Method with Iron and Copper Electrodes. Horizon. 21, 2015.
  • 29. LAKSHMI P.M., SIVASHANMUGAM P. Treatment of oil tanning effluent by electrocoagulation: Influence of ultrasound and hybrid electrode on COD removal. Sep. Purif. Technol. 116, 378, 2013.
  • 30. BARRERA-DÍAZ C., FRONTANA-URIBE B., BILYEU B. Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H₂O₂. Chemosphere. 105, 160, 2014.
  • 31. BAZRAFSHAN E., BIGLARI H., MAHVI A.H. Phenol removal by electrocoagulation process from aqueous solutions. Fresenius Environ. Bull. 21, 364, 2012.
  • 32. MAHVI A.H., BAZRAFSHAN E., BIGLARI H. Humic acid removal from aqueous environments by electrocoagulation process using iron electrodes. E-Journal Chem. 9, 2453, 2012.
  • 33. BANESHI M.M., NARAGHI B., RAHDAR S., BIGLARI H., SAEIDI M., AHAMADABADI M., NAROOIE M.R., SALIMI A., KHAKSEFIDI R., ALIPOUR V. Removal of remazol black B dye from aqueous solution by electrocoagulation equipped with iron and aluminium electrodes. IIOAB J. 7, 529, 2016.
  • 34. KHOSRAVI R., HOSSINI H., HEIDARI M., FAZLZADEH M., BIGLARI H., TAGHIZADEH A., BARIKBIN B. Electrochemical decolorization of reactive dye from synthetic wastewater by mono-polar aluminum electrodes system. Int. J. Electrochem. Sci. 12, 4745, 2017.
  • 35. RAHMANI A. Removal of water turbidity by the electrocoagulation method. J. Res. Health Sci. 8, 18, 2008.
  • 36. REN Y.-Z., FRANKE M., ANSCHUETZ F., ONDRUSCHKA B., IGNASZAK A., BRAEUTIGAM P. Sonoelectrochemical degradation of triclosan in water. Ultrason. Sonochem. 21, 2020, 2014.
  • 37. MASSOUDINEJAD M., YAZDANBAKHSH A., MOHAMADI B., HABIBE M. Possibility of making liquid Disinfectant from Electrolysis of NaCl. Saf. Promot. Inj. Prev. 4, 69, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d0b7844b-d37e-4c22-bb38-daa077bfae93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.