PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 56 | 2 |

Tytuł artykułu

A morphometric analysis of the geniculate bodies in selected mammalian species

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Unbiased stereological methods were used to examine and compare morphometrically the geniculate bodies (GB) in representatives of four mammalian orders (Insectivora, Rodentia, Lagomorpha, and Carnivora). The significant disproportion was observed between the relative sizes of both geniculate nuclei and their neuronal populations in the common shrew and the bank vole. The medial geniculate body (MGB) in the common shrew definitely surpassed the lateral geniculate body (LGB) in terms of percentage volume and percentage number of neurons. The volume of the GB and their nuclei correlated with their mean neuronal populations, whereas the negative correlation was observed between volumes and neuronal density; however, not as distinct as in the non-sensory brain structures. In all examined species, the LGB always had a higher numerical density than the MGB, while the MGB neurons were always distinctly larger than that of the LGB, which clearly differentiated both neuronal complexes. Analysis of these data shows that the GB differs in terms of the morphometric characteristics in the studied species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

56

Numer

2

Opis fizyczny

p.205-210,fig.,ref.

Twórcy

autor
  • Department of Comparative Anatomy, University of Warmia and Mazury, 10-727 Olsztyn, Poland
autor
autor
autor

Bibliografia

  • 1. Brauer K., Schober W., Winkelmann E.: Phylogenetical changes and functional specializations in the dorsal lateral geniculate nucleus (dLGN) of mammals. J Hirnforsch 1978, 19, 177-187.
  • 2. Conley M., Birecree E., Casagrande V.A.: Neuronal classes and their relation to functional and laminar organization of the lateral geniculate nucleus: a Golgi study of the prosimian primate, Galago crassicaudatus. J Comp Neurol l985, 242, 561-583.
  • 3. DeVito J.L., Graham J., Sackett G.P.: Volumetric growth of the major brain divisions in fetal Macaca nemestrina. J Hirnforsh 1989, 30, 479-487.
  • 4. Edelstein K., Amir S.: The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J Neurosci 1999, 19, 372-380.
  • 5. Goel N., Governale M.M., Jechura T.J., Lee T.M.: Effects of intergeniculate leaflet lesions on circadian rhythms in Octodon degus. Brain Res 2000, 877, 306- 313.
  • 6. Kowiański P., Dziewiątkowski J., Kowiańska J., Moryś J.: Comparative anatomy of the claustrum in selected species: A morphometric analysis. Brain Behav Evol 1999, 53, 44-54.
  • 7. Kulesza R.J., Viñuela A., Saldaña E., Berrebi A.S.: Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear Res 2002, 168, 12-24.
  • 8. LeDoux J.E., Ruggiero D.A., Reis D.J.: Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 1985, 242, 182-213.
  • 9. Livingston C.A., Fedder S.R.: Visual-ocular motor activity in the macaque pregeniculate complex. J Neurophysiol 2003, 90, 226-244.
  • 10. Livingston C.A., Mustari M.J.: The anatomical organization of the macaque pregeniculate complex. Brain Res 2000, 876, 166-179.
  • 11. McConnell S.K., Le Vay S.: Anatomical organization of the visual system of the mink, Mustela vison. J Comp Neurol 1986, 250, 109-132.
  • 12. Mello L.E., Tan A.M., Finch D.M.: Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: an in vivo extra- and intracellular electrophysiological study. Brain Res 1992, 587, 24-40.
  • 13. Murphy P.C., Duckett S.G., Sillito A.M.: Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. J Neurosci 2000, 20, 845-853.
  • 14. Najdzion J., Wasilewska B., Bogus-Nowakowska K., Równiak M., Szteyn S., Robak A.: A morphometric comparative study of the lateral geniculate body in selected placental mammals: the common shrew, the bank vole, the rabbit, and the fox. Folia Morphol (Warszawa) 2009, 68, 70-78.
  • 15. Najdzion J., Wasilewska B., Równiak M., Bogus- Nowakowska K., Szteyn S., Robak A.: A morphometric comparative study of the medial geniculate body of the rabbit and the fox. Anat Histol Embryol 2011, 40, 326- 334.
  • 16. Nakamura H., Itoh K.: Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat. J Comp Neurol 2004, 473, 439-462.
  • 17. Narkiewicz O., Dziewiątkowski J., Moryś J.: Lateral tuberal nucleus in man and macaca comparative morphometric investigations. Folia Morphol (Warszawa) 1994, 53, 1-12.
  • 18. Niimi K., Ono K., Kusunose M.: Projections of the medial geniculate nucleus to layer 1 of the auditory cortex in the cat traced with horseradish peroxidase. Neurosci Lett 1984, 45, 223-228.
  • 19. Radtke-Schuller S.: Cytoarchitecture of the medial geniculate body and thalamic projections to the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi). Anat Embryol (Berlin) 2004, 209, 59-76.
  • 20. Równiak M., Robak A., Szteyn S., Bogus-Nowakowska K., Wasilewska B., Najdzion J.: The morphometric study of the amygdala in the rabbit. Folia Morphol (Warszawa) 2007, 66, 44-53.
  • 21. Vrang N., Mrosovsky N., Mikkelsen J.D.: Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res Bull 2003, 59, 267-288.
  • 22. West M.J., Gundersen H.J.: Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 1990, 296, 1-22.
  • 23. Winer J.A., Kelly J.B., Larue D.T.: Neural architecture of the rat medial geniculate body. Hear Res 1999, 130, 19-41.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d07c4dca-b87c-4ca2-9910-6afe0d1dfe37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.