Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1991 | 42 | 4 |
Tytuł artykułu

Effects of calmidazolium, carbachol and derivatives of cyclic GMP on the longitudinal internal resistivity in rabbit atrial trabeculae

Treść / Zawartość
Warianty tytułu
Języki publikacji
The effects of calmidazolium, carbachol and membrane permeable derivatives of cGMP (dipalmitoyl cGMP and 8-Bromo cGMP) on the longitudinal internal resistivity (Ri) were studied in the rabbit atiial trabeculae by means of electrophysiological recording techniques and histological planimetry. Calmidazolium as well as carbachol decreased Ri whereas cGMP-derivatives enhanced this resistivity. The effect of calmidazolium suggested that calmodulin reduced the cell coupling under control conditions. Carbachol decreased the Ca-inward current, and probably it prevented the calmodulin activation. The action of the nucleotides showed that cGMP did not mediate the cholinergic effect on the cell coupling. The possible interaction between calmodulin and cGMP was discussed.
Opis fizyczny
  • Department of Physiology, Silesian School of Medicine, Medykow 18, 40-762 Katowice, Poland
  • 1. Délèze J. Cell-to-cell communication in heart: structure-function correlations. Experientia 1987; 43: 1068-1075.
  • 2. De Mello WC. Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells. Biochem Biophys Res Comm 1984; 119: 1001-1007.
  • 3. De Mello WC, van Loon P. Influence of cyclic nucleotides on junctional permeability in atrial muscle. J Mol Cell Cardiol 1987; 19: 83-94.
  • 4. De Mello WC, van Loon P. Further studies on the influence of cyclic nucleotides on junctional peimeability in heart. J Mol Cell Cardiol 1987; 19: 763-771.
  • 5. Pressler ML, Hathway DR. Phosphorylation of purified dog heart gap junctions by c-AMP dependent protein kinase. Circulation 1987; 76: Supp 4, 18.
  • 6. Saez JC, Spray DC, Nairn AC, Hertzberg E, Greengard P, Bennet MVL. cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junctional polypeptide. Proc Natl Acad Sci USA 1986; 83: 2473-2477.
  • 7. Pressler ML. Effects of pCai and pHi on the cell-to-cell coupling. Experientia 1987; 43:1084- 1091.
  • 8. Peracchia C. Permeability and regulation of gap junctional channels in cells and artificial lipid bilayers. In: De Mello WC (ed) Cell-to-cell communication. Plenum Press, New York 1987; pp 65-101.
  • 9. Van Belle H. R24571: a potent inhibitor of calmodulin-activated enzymes. Cell calcium 1981; 2: 483-494.
  • 10. Wojtczak JA. Electrical uncoupling induced by general anesthetics: a calcium-independent process? In: Bennet MVL, Spray DC (eds) Gap junctions. Cold Spring Harbor Laboratory, Cold Spring Harbor 1985; pp 167-175.
  • 11. Tuganowski W, Korczyńska I, Wąsik K, Piątek G. Effects of calmidazolium and dibutyryl cyclic AMP on the longitudinal internal resistance in sinus node strips. Pflügers Arch 1989; 414: 351-353.
  • 12. Burt JM, Spray DC. Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol 1988; 254: H1206-H1210.
  • 13. Wojtczak J. Influence of cyclic nucleotides on the internal longitudinal resistance and contractures in noimal and hypoxic mammalian cardiac muscle. J Mol Cell Cardiol 1982; 14: 259-265.
  • 14. Tuganowski W, Bukowski M, Korczyńska I, Wąsik K, Wójcik В. Effects of cyclic nucleotides on the longitudinal internal resistance in the rabbit sinus node. Pol J Pharmacol Pham 1988; 40: 5-9.
  • 15. Tuganowski W, Bukowski M, Korczyńska I, Wójcik В, Wąsik K. A method of measurement of longitudinal resistances in an isolated cardiac and smooth muscle preparation. Pflügers Arch 1986; 406: 232-233.
  • 16. Kléber AG, Riegger CB, Janse MJ. Electrical uncoupling and increase in extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circulation Res 1987; 61: 271-279.
  • 17. Riegger CB, Alperovich G, Kléber AG. Effect of oxygen withdrawal on the active and passive properties of arterially perfused rabbit ventricular muscle. Circulation Res 1989; 64: 532-541.
  • 18. Reuter H. Calcium movements through cardiac cell membranes. Med Res Rev 1985; 5: 427-440.
  • 19. Trautwein W, Kameyama M, Hescheler J, Hoffman F. Cardiac calcium channels and their transmitter modulation. In: Lüttgau НС (ed) Membrane control. Fischer, Stuttgart 1986; vol 33, pp. 163-182.
  • 20. Emeux C, Van Sonde J, Miot F, Cochaux P, Dewster C, Dumont JF. A mechanism in the control of intracellular cAMP level: the activation of a calmodulin-sensitive phosphodiesterase by a rise of intracellular calcium. J Mol Cell Endocrinol 1985; 43: 123-134.
  • 21. Weishaar RF, Burrows SD, Kobylarz DC, Quade MM, Evans DB. Multiple foims of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Biochem Phrmacol 1986; 35: 787-800.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.