PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |
Tytuł artykułu

Differential effect of day and night temperature regimes on the growth and biochemical attributes of violet rape (Brassica campestris ssp. chinensis L.)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigated the influences of different day and night temperature regimes on the growth of violet rape (Brassica rapa var. chinensis) and pinpointed the optimal temperature combination for both yield and quality of the plant. For this purpose, the plants were grown under 6 temperature combination conditions: W1 (30/20ºC, 12-h light/12-h dark), W2 (25/15ºC, 12-h light/12-h dark), W3 (20/10ºC, 12-h light/12-h dark), W4 (30/15°C, 12-h light/12-h dark), W5 (25/10ºC, 12-h light/12-h dark), and W6 (30/10ºC, 12-h light/12-h dark), and in addition we measured various morphological, yield, and biochemical traits. Results demonstrated that temperature regimes considerably affected the growth parameters of the violet rape compared with control. The W3 treatment with an average temperature of 20/10ºC displayed the highest plant growth traits, including plant height (12.74±0.24 cm), leaf length (8.20±0.08 cm), leaf width (5.44±0.16 cm), and leaf area (33.46±0.83 cm²). Moreover, a highly significant correlation (p<0.05) was found between temperature and soluble protein, chlorophyll, anthocyanin, nitrate nitrogen contents, and root activity; whereas the vitamin C and soluble sugar contents remained significantly unaffected except in the W1 treatment, under different temperature combinations between day and night. This study concluded that high temperature exerts an adverse effect on plant growth, and therefore a low day and night temperature combination is suggested in order to achieve high yield and quality for irrigated violet rape.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
6
Opis fizyczny
p.2553-2560,fig.,ref.
Twórcy
autor
  • School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
autor
  • School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
autor
  • State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
autor
  • School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
autor
  • School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
autor
  • School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
Bibliografia
  • 1. DENG N., LING X., SUN Y., ZHANG C., FAHAD S., PENG S., CUI K., NIE L., HUANG J. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. European Journal of Agronomy. 64, 37, 2015.
  • 2. PENG S., HUANG J., SHEEHY J.E., LAZA RC., VISPERAS R.M., ZHONG X., CENTENO G.S., KHUSH G.S., CASSMAN K.G. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America. 101 (27), 9971, 2004.
  • 3. SOLOMON S., QIN D., MANNING M., CHEN Z., MARQUIS M., AVERYT K., TIGNOR M., MILLER H. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge. 2007.
  • 4. TEBALDI C., HAYHOE K., ARBLASTER J.M., MEEHL G.A. Going to the extremes. Climatic Change. 79 (3-4), 185, 2006.
  • 5. MEEHL GA., WASHINGTON WM., ARBLASTER JM., HU A., TENG H., KAY JE., GETTELMAN A., LAWRENCE DM., SANDERSON BM., STRAND WG. Climate change projections in CESM1 (CAM5) compared to CCSM4. Journal of Climate. 26 (17), 6287, 2013.
  • 6. KHALID M., BILAL M., HASSANI D., IQBAL H.M., WANG H., HUANG D. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Botanical Studies. 58 (1), 5, 2017.
  • 7. HUANG R.J., ZHANG Y., BOZZETTI C., HO K.F., CAO J.J., HAN Y., DAELLENBACH K.R., SLOWIK J.G., PLATT S.M., CANONACO F. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 514 (7521), 218, 2014.
  • 8. LIN T., QIN Y., ZHENG B., LI Y., CHEN Y., GUO Z. Source apportionment of polycyclic aromatic hydrocarbons in the Dahuofang Reservoir, Northeast China. Environmental Monitoring and Assessment. 185 (1), 945, 2013.
  • 9. TAO M., CHEN L., XIONG X., ZHANG M., MA P., TAO J., WANG Z. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmospheric Environment. 98, 417, 2014.
  • 10. ZHANG R., JING J., TAO J., HSU S-C., WANG G., CAO J., LEE C.S.L., ZHU L., CHEN Z., ZHAO Y. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmospheric Chemistry and Physics. 13 (14), 7053 2013.
  • 11. KHALID M., HASSANI D., BILAL M., LIAO J., HUANG D. Elevation of secondary metabolites synthesis in Brassica campestris ssp. chinensis L. via exogenous inoculation of Piriformospora indica with appropriate fertilizer. PLOS ONE. 12, 0177185, 2017.
  • 12. AJISAKA H., KUGINUKI Y., YUI S., ENOMOTO S., HIRAI M. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis syn. campestris L.) using bulked segregant analysis. Euphytica. 118 (1), 75. 2001.
  • 13. TAKUNO S., KAWAHARA T., OHNISHI O. Phylogenetic relationships among cultivated types of Brassica rapa L. em. Metzg. as revealed by AFLP analysis. Genetic Resources and Crop Evolution. 54 (2), 279, 2007.
  • 14. NXAWE S., NDAKIDEMI P., LAUBSCHER C. Possible effects of regulating hydroponic water temperature on plant growth, accumulation of nutrients and other metabolites. African Journal of Biotechnology. 9 (54), 9128, 2010.
  • 15. MAHMUD T.M.M., ATHERTON J.G., WRIGHT C.J., RAMLAN M.F., AHMAD S.H. Pak Choi (Brassica rapa ssp Chinensis L) quality response to pre-harvest salinity and temperature. Journal of the Science of Food and Agriculture. 79 (12), 1698, 1999.
  • 16. FRANCISCO M., VELASCO P., MORENO D.A., GARCÍA-VIGUERA C., CARTEA M.E. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Research International. 43 (5), 1455, 2010.
  • 17. BUYSSE J., MERCKX R. An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany. 44 (10), 1627, 1993.
  • 18. SEDMAK J.J., GROSSBERG S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Analytical Biochemistry. 79 (1-2), 544, 1977.
  • 19. POWELL W., CATRANIS C., MAYNARD C. Design of self-processing antimicrobial peptides for plant protection. Lett Appl Microbiol. 31 (2), 163, 2000. the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 975 (3), 384, 1989.
  • 20. PORRA R., THOMPSON W., KRIEDEMANN P. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 975 (3), 384, 1989
  • 21. CHAPMAN V.J. Coastal vegetation: Elsevier. 2016.
  • 22. HU J., WU W., CAO Z., WEN J., SHU Q., FU S. Morphological, physiological and biochemical responses of Camellia oleifera to low-temperature stress. Pakistan Journal of Botany. 48 (3), 899, 2016.
  • 23. SHIMONO H., FUJIMURA S., NISHIMURA T., HASEGAWA T. Nitrogen uptake by rice (Oryza sativa L.) exposed to low water temperatures at different growth stages. Journal of Agronomy and Crop Science. 198 (2), 145, 2012.
  • 24. SHIMONO H., OKADA M., KANDA E., ARAKAWA I. Low temperature-induced sterility in rice: Evidence for the effects of temperature before panicle initiation. Field Crops Research. 101 (2), 221, 2007.
  • 25. LIU Q., WU X., MA J., LI T., ZHOU X., GUO T. Effects of high air temperature on rice grain quality and yield under field condition. Agronomy Journal. 105 (2), 446, 2013.
  • 26. SHI W., MUTHURAJAN R., RAHMAN H., SELVAM J., PENG S., ZOU Y., JAGADISH K.S. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytologist. 197 (3), 825, 2013.
  • 27. KOINI M.A., ALVEY L., ALLEN T., TILLEY C.A., HARBERD N.P., WHITELAM G.C., FRANKLIN K.A. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current Biology. 19 (5), 408, 2009.
  • 28. PASSARELLA V.S., SAVIN R., SLAFER G.A. Grain weight and malting quality in barley as affected by brief periods of increased spike temperature under field conditions. Crop and Pasture Science. 53 (11), 1219, 2002.
  • 29. PATEL D., FRANKLIN K.A. Temperature-regulation of plant architecture. Plant Signaling & Behavior. 4 (7), 577, 2009.
  • 30. DJANAGUIRAMAN M., PRASAD P., SEPPANEN M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry. 48 (12), 999, 2010.
  • 31. HASANUZZAMAN M., NAHAR K., ALAM M.M., ROYCHOWDHURY R., FUJITA M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences. 14 (5), 9643, 2013.
  • 32. RODRÍGUEZ M., CANALES E., BORRÁS-HIDALGO O. Molecular aspects of abiotic stress in plants. Biotecnología Aplicada. 22 (1), 1, 2005.
  • 33. RIVERO R.M., MESTRE T.C., MITTLER R., RUBIO F., GARCIA-SANCHEZ F., MARTINEZ V. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell & Environment. 37 (5), 1059, 2014.
  • 34. SÁNCHEZ B., RASMUSSEN A., PORTER J.R. Temperatures and the growth and development of maize and rice: a review. Global Change Biology. 20 (2), 408, 2014.
  • 35. MARTEL A.B., QADERI M.M. Does salicylic acid mitigate the adverse effects of temperature and ultraviolet-B radiation on pea (Pisum sativum) plants? Environmental and Experimental Botany. 122, 39, 2016.
  • 36. SANGTARASH M., QADERI M., CHINNAPPA C., REID D. Differential sensitivity of canola (Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. Environmental and Experimental Botany. 66 (2), 212, 2009.
  • 37. CHOUDHARY K.K., AGRAWAL S. Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.). Ecotoxicology and Environmental Safety. 100, 178, 2014.
  • 38. BALLARÉ C.L., CALDWELL M.M., FLINT S.D., ROBINSON S.A., BORNMAN J.F. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochemical & Photobiological Sciences. 10 (2), 226, 2011.
  • 39. SHATTUCK V., KAKUDA Y., SHELP B., KAKUDA N. Chemical composition of turnip roots stored or intermittently grown at low temperature. Journal of the American Society for Horticultural Science. 116 (5), 818, 1991.
  • 40. SCHONHOF I., KLÄRING H.P., KRUMBEIN A., CLAUßEN W., SCHREINER M. Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agriculture, Ecosystems & Environment. 119 (1), 103, 2007.
  • 41. MØLMANN J.A., STEINDAL A.L., BENGTSSON G.B., SELJÅSEN R., LEA P., SKARET J., JOHANSEN T.J. Effects of temperature and photoperiod on sensory quality and contents of glucosinolates, flavonols and vitamin C in broccoli florets. Food Chemistry. 172, 47, 2015.
  • 42. FRANDSEN K.E., SIMMONS T.J., DUPREE P., POULSEN J-C.N., HEMSWORTH G.R., CIANO L., JOHNSTON E.M., TOVBORG M., JOHANSEN K.S., VON FREIESLEBEN P. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nature Chemical Ciology. 12 (4), 298, 2016.
  • 43. HOPKINS R., GRIFFITHS D., BIRCH A., MCKINLAY R. Influence of increasing herbivore pressure on modification of glucosinolate content of swedes (Brassica napus spp. rapifera). Journal of Chemical Ecology. 24 (12), 2003, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-d05499d2-15a1-4c27-ae97-28cd9609530e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.