PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 09 |

Tytuł artykułu

Sensitivity and biochemical mechanisms of sunflower genotypes exposed to saline and water stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Crops tolerant to salt and drought stress are an excellent alternative for producers in semi-arid regions. However, it is necessary to select the crops more tolerant and understand their involved mechanisms. We evaluated the effects of salinity and drought on growth, water status, membrane integrity, as well the behavior of organic and inorganic solutes in sunflower genotypes. Greenhouse experiments were performed to evaluate the tolerance of sunflower genotypes (Catissol 01 and Helio 253) to the salt and drought stress. The salt and drought stress were simulated by sodium chloride (NaCl) and polyethylene glycol (PEG 6000), respectively. The treatments with NaCl and PEG 6000 induced adverse changes on the growth, water status and cell membranes of the sunflower plants. Sunflower genotypes are more sensitive to water deficit due to the higher osmotic imbalance. The presence of saline ions minimized damages in sunflowers genotypes caused by lower water potential. The Catissol 01 genotype accumulated Na⁺ in the stem and roots avoiding translocation to the leaves. Helio 253 showed higher tolerance to the salt and drought stress than Catissol 01. Salinity and drought caused alterations on the carbohydrates and nitrogen compounds of the two sunflower genotypes. Soluble sugars, soluble proteins, free amino acids, and proline participate differently in the osmotic adjustment of the genotypes. The accumulation of soluble sugars, soluble proteins, and proline in the leaves is a mechanism that increases the tolerance to the salt and drought stress in the Helio 253 genotype.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

09

Opis fizyczny

Article 159 [12p.], fig.,ref.

Twórcy

  • Department of Crop Production, Universidade Rural do Semi-Arido, Mossoro, RN, Brazil
autor
  • Department of Crop Production, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
autor
  • Department of Crop Production, Universidade Rural do Semi-Arido, Mossoro, RN, Brazil
autor
  • Department of Crop Production, Universidade Rural do Semi-Arido, Mossoro, RN, Brazil
  • Department of Crop Production, Universidade Federal do Rio Grande do Norte, Campus universitario, Lagoa Nova, Natal, RN, Brazil

Bibliografia

  • Avramović JM, Veličković AV, Stamenković OS, Rajković KM, Milić PS, Veljković VB (2015) Optimization of sunflower oil ethanolysis catalyzed by calcium oxide: RSM versus ANN-GA. Energy Convers Manage 105:1149–1156. https://doi.org/10.1016/j.enconman.2015.08.072
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Beyene Y, Semagn K, Crossa J, Mugo S, Atlin GN, Tarekegne A, Alvarado G (2016) Improving maize grain yield under drought stress and non-stress environments in sub-Saharan Africa using marker-assisted recurrent selection. Crop Sci 56:344–353. https://doi.org/10.2135/cropsci2015.02.0135
  • Bhaskara GB, Yang TH, Verslues PE (2015) Dynamic proline metabolism: importance and regulation in water limited environments. Front Plant Sci 6:484. https://doi.org/10.3389/fpls.2015.00484
  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10. https://doi.org/10.1111/pce.12800
  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat1. Crop Sci 21:43–47
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Chai Q, Gan Y, Zhao C, Xu HL, Waskom RM, Niu Y, Siddique KH (2016) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36:3. https://doi.org/10.1007/s13593-015-0338-6
  • Cunha APM, Alvalá RC, Nobre CA, Carvalho MA (2015) Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric For Meteorol 214:494–505. https://doi.org/10.1016/j.agrformet.2015.09.010
  • da Silva EN, Silveira JAG, Rodrigues CF, de Lima CS, Viégas RA (2010) Contribuição de solutos orgânicos e inorgânicos no ajustamento osmótico de pinhão-manso submetido à salinidade. Pesquisa Agropecuária Brasileira 44:437–445
  • de Carvalho LM, de Oliveira IR, de Carvalho HWL, Carvalho C, Lira M, de Oliveira TRA (2015) Comportamento de cultivares de girassol em consorciação com o feijoeiro comum no agreste de Sergipe. Embrapa Tabuleiros Costeiros-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1023630/1/BP91.pdf Accessed 15 April 2019
  • Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012) The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Plant Physiol Biochem 54:34–42. https://doi.org/10.1016/j.plaphy.2012.02.005
  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
  • Enrique G, Olmo M, Poorter H, Ubera JL, Villar R (2016) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS One 11:e0148788. https://doi.org/10.1371/journal.pone.0148788
  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na⁺/H⁺ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288. https://doi.org/10.1007/s00299-013-1528-9
  • Figueiredo JRM, de Oliveira Paiva PD, dos Reis MV, Nery FC, de Menezes Campos S, da Silva DPC, Paiva R (2017) Development changes in calla lily plants due to salt stress. Acta Physiol Plant 39:147. https://doi.org/10.1007/s11738-017-2446-1
  • Ghobadi M, Taherabadi S, Ghobadi ME, Mohammadi GR, Jalali-Honarmand S (2013) Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Ind Crops Prod 50:29–38. https://doi.org/10.1016/j.indcrop.2013.07.009
  • Gilbert ME, Medina V (2016) Drought adaptation mechanisms should guide experimental design. Trends Plant Sci 21:639–647. https://doi.org/10.1016/j.tplants.2016.03.003
  • Govrin R, Schlesinger I, Tcherner S, Sivan U (2017) Regulation of surface charge by biological osmolytes. J Am Chem Soc 139:15013–15021. https://doi.org/10.1021/jacs.7b07036
  • Gray SB, Dermody O, Klein SP, Locke AM, Mcgrath JM, Paul RE, Ainsworth EA (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants 2:16132. https://doi.org/10.1038/NPLANTS.2016.132
  • Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N (2015) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol 32:113–120. https://doi.org/10.1016/j.copbio.2014.11.025
  • Hoagland, Arnon DI (1950) The water culture method for growing plants without soils. California Agricultural Experimental Station, Berkeley, p 347
  • Khaliq A, Zia-ul-Haq M, Ali F, Aslam F, Matloob A, Navab A, Hussain S (2015) Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. Clean–Soil Air Water 43:1248–1258. https://doi.org/10.1002/clen.201400854
  • Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015. https://doi.org/10.3389/fpls.2016.01015
  • Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Hüner NP (2015) Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynth Res 126:221–235. https://doi.org/10.1007/s11120-015-0125-x
  • Kuromori T, Mizoi J, Umezawa T, Yamaguchi-Shinozaki K, Shinozaki K (2015) Stress signaling networks: drought stress. Mol Biol 4:1–23. https://doi.org/10.1007/2F978-1-4939-0263-7_7-1
  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84. https://doi.org/10.1038/nature16467
  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51. https://doi.org/10.1016/j.envexpbot.2014.10.006
  • Martínez-Vilalta J, Garcia-Forner N (2017) Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ 40:962–976. https://doi.org/10.1111/pce.12846
  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172
  • Melo YL, Danta CV, Lima-Melo Y, Maia JM, Macedo CEC (2017) Changes in osmotic and ionic indicators in Ananas comosus (L.) MD gold pre-treated with phytohormones and submitted to saline medium. Revista Brasileira de Fruticultura 39:(e-155). https://doi.org/10.1590/0100-29452017155
  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237. https://doi.org/10.1038/nrg3901
  • Monteiro JG, Cruz FJR, Nardin MB, dos Santos DMM (2014) Crescimento e conteúdo de prolina em plântulas de guandu submetidas a estresse osmótico e à putrescina exógena. Pesquisa Agropecuária Brasileira 49:18–25. https://doi.org/10.1590/S0100-204X2014000100003
  • Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208:668–673. https://doi.org/10.1111/nph.13519
  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469. https://doi.org/10.1890/0012-9658(2001)082%5b0453:gsccol%5d2.0.co;2
  • Ning JF, Cui LH, Yang SH, Ai SY, Li MJ, Sun LL, Zeng ZB (2015) Basil ionic responses to seawater stress and the identification of gland salt secretion. J Anim Plant Sci 25:131–138
  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086
  • Peoples MB, Faizah AW, Reakasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Center for International Agricultural Research, Canberra, p 76
  • Rahdari P, Hoseini SM (2012) Drought stress: a review. Int J Agron Plant Prod 3:443–446
  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na⁺/K⁺ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609. https://doi.org/10.3389/fpls.2016.00609
  • Ren B, Wang M, Chen Y, Sun G, Li Y, Shen Q, Guo S (2015) Water absorption is affected by the nitrogen supply to rice plants. Plant Soil 396:397–410. https://doi.org/10.1007/s11104-015-2603-5
  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. https://doi.org/10.1016/j.copbio.2013.12.004
  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22. https://doi.org/10.1007/s10142-013-0356-x
  • Slavick B (1974) Methods of studying plant water relations. Springet Verlong, New York, p 449
  • Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Santelia D (2016) Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell 28:1860–1878. https://doi.org/10.1105/tpc.16.00143
  • Vieira RD, Carvalho NM (1994) Testes de vigor de sementes. Fundação de apoia a pesquisa, ensino e extensão-FUNEP, Jaboticabal, p 164
  • Vilvert E, Lana M, Zander P, Sieber S (2018) Multi-model approach for assessing the sunflower food value chain in Tanzania. Agric Syst 159:103–110. https://doi.org/10.1016/j.agsy.2017.10.014
  • Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci 6:873. https://doi.org/10.3389/fpls.2015.00873
  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Badakhshan H (2014) Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine max L.). J Plant Nutr 37:2255–2269. https://doi.org/10.1080/01904167.2014.920386
  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. https://doi.org/10.1016/j.pbi.2014.07.009
  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12. https://doi.org/10.1111/ppl.12540
  • Zonta JH, Brandao ZN, Rodrigues JS, Sofiatti V (2017) Cotton response to water deficits at different growth stages. Revista Caatinga 30:980–990. https://doi.org/10.1590/1983-21252017v30n419rc

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d026dc5f-ba44-4556-9018-ebdd5e42962b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.