PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 14 | 1 |

Tytuł artykułu

Changes in electroencephalogram (EEG) power during subdominant (LEFT) hand finger movements in females with different alpha rhythm characteristics

Treść / Zawartość

Warianty tytułu

PL
Zmiany mocy elektroencefalogramu w trakcie wykonywania ruchów palcami mniej dominującej (lewej) re=ęki u kobiet z różnymi zmiennymi rytmu alfa

Języki publikacji

EN

Abstrakty

EN
Background. This study investigates the indicators of electroencephalographic (EEG) oscillatory activity and processes that are correlated with manual movements executed by the subdominant (left) hand in women with a high or a low individual α-frequency. Material and methods. 113 healthy right-handed women from the ages of 19 to 21 were divided randomly into two experimental groups with high (n = 59, IαF > 10.25 Hz) and low (n = 54, IαF ≤ 10.25 Hz) individual EEG α-frequency (IαF). EEG power during flexion or extension of the subdominant hand fingers was evaluated. Results. Manual movements performed by women, especially those exhibiting high modal α-frequency, were accompanied by reduced α and β power in mid and posterior cortical areas. These changes occurred in combination with a local power increase in α1-oscillations in the frontal leads. A local increase of α3-activity in the frontal cortex areas was also revealed in women with low IαF. In this same group of women, generalized increases in EEG power of θ-, β- and γ-oscillations were observed in the cortex. Conclusions. These results revealed a greater redundancy of brain processes in women with low IαF power compared to women with high α-frequency.
PL
Wprowadzenie. Niniejsza praca poświęcona jest badaniu wskaźników elektroencefalograficznej aktywności oscylacyjnej i procesów, które są skorelowane z ruchami manualnymi, u kobiet z wysoką lub niską indywidualną częstotliwością α określoną podczas ruchów manualnych wykonywanych przez mniej dominującą (lewą) rękę. Materiał i metody. 113 zdrowych praworęcznych kobiet w wieku od 19 do 21 lat zostało podzielonych na dwie grupy eksperymentalne z wysoką (n = 59, IαF ≥ 10,254 Hz) i niską (n = 54, IαF ≤ 10,25 Hz) indywidualną wartością częstotliwości EEG α (IαF). U tych kobiet oceniona została aktywność EEG podczas zginania lub prostowania mniej dominujących palców. Wyniki. Ruchom manualnym wykonywanym przez kobiety, zwłaszcza o wysokiej modalnej częstotliwości α, towarzyszyło pewne zmniejszenie mocy fal EEG α i β w środkowych i tylnych obszarach kory mózgowej. Takie zmiany połączono z lokalnym wzrostem mocy w oscylacjach α1 w przednich przewodach. Lokalny wzrost aktywności α3 w obszarach kory czołowej został również ujawniony u kobiet z niską wartością IαF. Pewne uogólnione zwiększenie mocy fal EEG oscylacji θ, β i γ zaobserwowano w korze kobiet należących do tej grupy. Wnioski. Wyniki ujawniają większą nadmiarowość procesów mózgowych u kobiet z małą mocą fal IαF w porównaniu z kobietami z wysoką częstotliwością α.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

1

Opis fizyczny

p.63-69,fig.,ref.

Twórcy

autor
  • Faculty of Medicine and Biology, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
autor
  • Faculty of Medicine, Charles University, Prague, Czech Republic
autor
  • Faculty of Medicine and Biology, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
  • Faculty of Medicine and Biology, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
autor
  • Faculty of Medicine and Biology, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine

Bibliografia

  • 1. Ioffe ME, Chernikova LA, Umarova RM, Katsuba NA, Kulikov MA. Learning postural tasks in hemiparetic patients with lesions of left versus right hemisphere. Experimental Brain Research. 2010; 201(4): 753-761. https://doi.org/10.1007/s00221-009-2091-z
  • 2. Ruge D, Muggleton N, Hoad D, Caronni A, Rothwell JC. An unavoidable modulation? Sensory attention and human primary motor cortex excitability. Europ J of Neurosci. 2014; 40(5): 2850-2858. https://doi.org/10.1111/ejn.12651
  • 3. Caminiti R, Borra E, Visco-Comandini F, Battaglia-Mayer A, Averbeck BB, Luppino G. Computational architecture of the parieto-frontal network underlying cognitive-motor control in monkeys. ENEURO. 2017; 4(1): 1-35. https://doi.org/10.1523/ENEURO.0306-16.2017
  • 4. Cisek P. Neural representations of motor plans, desired trajectories, and controlled object. Cognitive Processing. 2005; 6(1): 15-24. https://doi.org/10.1007/s10339-004-0046-7
  • 5. Kim HF, Hikosaka O. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain. 2015; 138(7): 1776-1800. https://doi.org/10.1093/brain/awv134
  • 6. Müller GR, Neuper C, Rupp R, Keinrath C, Gerner HJ, Pfurtscheller G. Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci Letters. 2003; 340(2): 143-147. https://doi.org/10.1016/S0304-3940(03)00019-3
  • 7. Kaplan AJ, Borisov SV, Zheligovskiy VA. [Classification of the adolescent EEG by the spectral and segmental characteristics for normals]. J I.P. Pavlov Journal of Higher Nervous Activity. 2005; 55(4): 478-486 (in Russian).
  • 8. Razumnikova OM, Yashanina AA. Roles of rational and irrational cognitive styles in the reactivity of the α rhythm in convergent and divergent thinking. Neuroscience and Behavioral Physiology. 2018; 48(7): 835-841. https://doi.org/10.1007/s11055-018-0637-x
  • 9. Umryukhin EA, Dzhebrailova TD, Korobeinikova II, Karatygin NA. [Physiological correlates of individual differences in decision-making time during purposeful mental activity in humans]. Human Physiology. 2008; 34(5): 574-580 (in Russian). https://doi.org/10.1134/S0362119708050058
  • 10. Bogdanov M, Timmermann JE, Gläscher J, Hummel FC, Schwabe L. Causal role of the inferolateral prefrontal cortex in balancing goal-directed and habitual control of behavior. Scientific Reports. 2018; 8(1): 9382. https://doi.org/10.1038/s41598-018-27678-6
  • 11. Bazanova OM. Role of individual posterior dominant alpha rhythm frequency EEG in psychophysiological individual differences. International Journal of Psychophysiology. 2014; 94(2): 177-177. https://doi.org/10.1016/j.ijpsycho.2014.08.754
  • 12. Kristeva R, Chakarov V, Losch F, Hummel S, Popa T, Schulte-Mönting J. Electroencephalographic spectral power in writer’s cramp patients: evidence for motor cortex malfunctioning during the cramp. NeuroImage. 2005; 27(3): 706-714. https://doi.org/10.1016/j.neuroimage.2005.05.004
  • 13. Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, et al. Thalamic Ca⌄3.1 T-type Ca²⁺ channel plays a crucial role in stabilizing sleep. Proceedings of the National Academy of Sciences of the USA. 2005; 102(5): 1743-1748. https://doi.org/10.1073/pnas.0409644102
  • 14. Page AJ, O’Donnell TA, Blackshaw LA. Inhibition of mechanosensitivity in visceral primary afferents by GABA(B) receptors involves calcium and potassium channels. Neuroscience. 2006; 137(2): 627-636. https://doi.org/10.1016/j.neuroscience.2005.09.016
  • 15. Spergel DJ. Calcium and small-conductance calcium-activated potassium channels in gonadotropinreleasing hormone neurons before, during, and after puberty. J of Endocrinology. 2007; 148(5): 2383-2390. https://doi.org/10.1210/en.2006-1693
  • 16. Anokhin A, Muller V, Lindenberger U, Heath AC, Myers E. Genetic influences on dynamic complexity of brain oscillations. Neuroscience Letter. 2006; 397(1-2): 93-98. https://doi.org/10.1016/j.neulet.2005.12.025
  • 17. Smit CM, Wright MJ, Hansell NK, Geffen GM, Martin NG. Genetic variation of individual alpha frequency (IαF) and alpha power in a large adolescent twin sample. Int J of Psychophysiol. 2006; 61(2): 235-243. https://doi.org/10.1016/j.ijpsycho.2005.10.004
  • 18. Bellone C, Nicoll RA. Rapid bidirectional switching of synaptic NMDA receptors. Neuron. 2007; 55(5): 779-788. https://doi.org/10.1016/j.neuron.2007.07.035
  • 19. Ng SC, Raveendran P. EEG peak alpha frequency as an indicator for physical fatigue. Medicon. 2007; 16: 517-520. https://doi.org/10.1007/978-3-540-73044-6_132
  • 20. Morenko AG. EEG activity during realization of manual movements by individuals with different characteristics of the alpha rhythm. Neurophysiology. 2017; 49(2): 142-150. https://doi.org/10.1007/s11062-017-9643-9
  • 21. Korzgyk O, Morenko A. Coherence of EEG frequency components while performing alternative finger movements in women with different modal frequency of alpha-rhythm. Scientific Bulletin of Lesya Ukrainka Volyn National University. Biological Sciences. 2015; 12(313): 112-118. https://doi.org/10.29038/2617-4723-2015-313-112-118
  • 22. Korzhyk O, Morenko O, Morenko A, Kotsan I. The electrical brain activity in men with different alpha-rhythm characteristics during manual movements executed by the subdominant hand. Annals of Neuroscienes. 2018; 25: 98-104. https://doi.org/10.1159/000487065
  • 23. Morenko A, Morenko O. Electrical activity of the cerebral cortex during the perception of sensory signals in women with different characteristics of alpha rhythm. Annals of Neuroscienses. 2016; 23(4): 235-240. https://doi.org/10.1159/000449484
  • 24. Zhavoronkova L. [Right-handed people, the left-hander. Hemispheric asymmetry of the human brain biopotentials]. Krasnodur: Ekoinvest; 2009 (in Russian).
  • 25. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012; 16(12): 606. https://doi.org/10.1016/j.tics.2012.10.007
  • 26. Angelakis E, Lubar JF, Stathopoulou S, Kounios J. Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clinical Neurophysiology. 2004; 115(4): 887-897. https://doi.org/10.1016/j.clinph.2003.11.034
  • 27. Watson BO, Buzsáki GD. Sleep, memory & brain rhythms. The Journal of the American Academy of Arts & Sciences. 2015; 144(1): 67-82. https://doi.org/10.1162/DAED_a_00318
  • 28. Avery MC, Dutt N, Krichmar JL. Mechanisms underlying the basal forebrain enhancement of top-down and bottom-up attention. Europ J of Neurosci. 2014; 39(5): 852-865. https://doi.org/10.1111/ejn.12433
  • 29. Tebenova K. [The study of the brain bioelectric activity in telephone exchange operators] [Internet]. Sovremennye problemy nauki i obrazovania. 2009; 4: 138-141 [cited 2019 Jul 10]. Available from: https://www.science-education.ru/ru/article/view?id=1217 (in Russian).
  • 30. Kostandov EA, Cheremushkin EA, Yakovenko IA, Petrenko NE. [Relationships between the flexibility of cognitive performance and the α-rhythm response to conditioning stimuli]. Human Physiol. 2015; 41(5): 468-477 (in Russian). https://doi.org/10.1134/S0362119715050060

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d0125615-8df1-4399-82d1-c4da955f98a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.