PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 59 | 4 |

Tytuł artykułu

Antiviral and cytotoxic activities of anthraquinones isolated from Cassia roxburghii Linn. leaves

Treść / Zawartość

Warianty tytułu

PL
Aktywność antywirusowa i cytotoksyczna antrachinonów wyizolowanych z liści Cassia roxburghii Linn.

Języki publikacji

EN

Abstrakty

EN
The cytotoxic activity of petroleum ether extract of the leaves of Cassia roxburghii Linn. against HCT-116 and MCF-7 cell lines resulted with IC50=34.9 and 38.04 μg/ml, respectively, while against HepG-2 showed no activity. A bioassay guided-fractionation approach was conducted to isolate and identify the active cytotoxic principles. Further chromatographic separation and purification of the petroleum ether extract resulted in the isolation of two anthraquinones identified as aloe-emodin acetate and aloe-emodin, along with stigmasterol, β-sitosterol and palmitic acid. The structure elucidation of isolated compounds was performend using 1D, 2D-NMR and HR-MS. Furthermore, the cytotoxicity of aloe-emodin acetate and aloe-emodin were evaluated and resulted with IC50=153.30 and 70.02 μg/ml against HCT-116 and with 93.20 and 53.20 μg/ml against MCF-7, respectively, while against HepG-2 showed no activity. Moreover, the antiviral activity of the two isolated anthraquinones was tested against influenza virus-A, and resulted with IC50=10.23 as well as 2.00 and with CC50=1.32 and 0.47 μg/ml, respectively.
PL
Aktywność cytotoksyczna wyciągu benzynowego z liści Cassia roxburghii Linn. przeciwko liniom komórkowym HCT-116 i MCF-7 wynosiła odpowiednio IC50=34.9 i 38,04 μg/ ml, natomiast nie wykazano aktywności przeciwko HepG-2. Przeprowadzono biologiczne frakcjonowanie w celu wyizolowania i identyfikacji aktywnych związków o działaniu cytotoksycznym. Późniejsza separacja chromatograficzna i oczyszczenie wyciągu benzynowego zaowocowało wyizolowaniem dwóch antrachinonów oznaczonych jako octan aloe-emodyny i aloe-emodyna, a także stigmasterolu, β-sitosterolu i kwasu palmitynowego. Określenie struktury wyizolowanych składników przeprowadzono przy użyciu 1D, 2D-NMR i HR-MS. Określono także cytotoksyczność octanu aloe-emodyny i aloe-emodyny, której wartość wyniosła odpowiednio IC50=153,30 i 70,02 μg/ml przeciwko HCT-116 oraz odpowiednio 93,20 i 53,20 μg/ml przeciwko MCF-7. Nie wykazano aktywności przeciwko HepG-2. Testowano też aktywność przeciwwirusową dwóch wyizolowanych antrachinonów przeciwko wirusowi grypy typu A. Wyniosła ona odpowiednio IC50=10,23 oraz 2,00 przy CC50=1,32 i 0,47 μg/ml.

Wydawca

-

Czasopismo

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.33-44,fig.,ref.

Twórcy

  • Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
  • Pharmaceutical and Drug Industries Research Division, Pharmacognosy Department, National Research Center, Dokki-12311, Cairo, Egipt
  • Pharmaceutical and Drug Industries Research Division, Chemistry of Natural Compounds Department, National Research Center, Dokki-12311, Cairo, Egipt
  • Pharmaceutical and Drug Industries Research Division, Pharmacognosy Department, National Research Center, Dokki-12311, Cairo, Egipt
autor
  • Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan

Bibliografia

  • 1. Girhepunje K, Arulkumaran, Pal R, Maski N, Thirumoorthy N. A novel binding agent for pharmaceutical formulation from Cassia roxburghii seeds. Int J Pharm Pharm Sci 2009; 1:1–5.
  • 2. Hennebelle T, Weniger B, Joseph H, Sahpaz S, Bailleul F. Senna alata. Fitoterapia 2009; 80:385–393.
  • 3. Arulkumaran KS, Rajasekaran A, Ramasamy A, Jegadee-san M, Kavimani S, Somasundaram A. Cassia roxburghii seeds protect liver against toxic effects of ethanol and carbontetrachloride in rats. Int J Pharm Tech Res 2009; 1:273–246.
  • 4. Mupangwa JF, Acamonic T, Topps JH, Ngongon INT, Hamnudikuwanda H. Content of soluble and bound condensed tannins of three tropical herbaceous forage legumes. Feed Anim Sci Tech 2000; 83:139–144.
  • 5. Moriyama H, Iizuka T, Nagai M, Murata Y. HPLC quantification of kaempferol-3-O-gentiobioside in Cassia alata. Fitoterapia 2003; 74:425–430.
  • 6. Chidume FC, Gamaniel K, Amos S, Akah P, Obodozie O, Wambebe C. Pharmacological activity of the methanolic extract of Cassia nigricans leaves. Indian J Pharmacol 2001; 33:350–356.
  • 7. Yen GC, Chuang DY. Antioxidant properties of water extracts from Cassia tora L. in relation to the degree of roasting. J Agric Food Chem 2000; 48:2760–2765.
  • 8. Jalalpure SS, Patil MB, Pai A, Shah BN, Salahuddin MD. Antidiabetic activity of Cassia auriculata seeds in alloxan induced diabetic rats. Nigerian J Nat Prod Med 2004; 8:22–23.
  • 9. Iwalewa EO, Lege-Oguntoye L, Rai PP, Iyaniwura TT. In vivo and in vitro antimalarial activity of two crude extracts of Cassia occidentalis leaf. Nigerian J Pharm Sci 1997; 5:23–28.
  • 10. Yang Y, Lim M, Lee H. Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. J Agric Food Chem 2003; 51:7629–7631.
  • 11. Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia 2010; 81:223–230.
  • 12. Bhakta T, Mukherjee PK, Saha K, Pal M, Saha BP. Studies on in-vivo wound healing activity of Cassia fistula Linn. (Leguminosae) leaves in rats. Nat Prod Sci 1998; 4: 84–87.
  • 13. Abo KA, Lasaki SW, Adeyemi AA. Laxative and antimicrobial properties of Cassia species growing in Ibadan. Nigerian J Nat Prod Med 1999; 3:47–50.
  • 14. Jacob DL, Odeh SO, Otsapa PBL. Preliminary in vivo studies of the anti-ulcer effects of the crude seed and leaves extract of Cassia occidentalis in albino Wistar rats. J Med Trop 2002; 4:15–18.
  • 15. Pieme CA, Penlap VN, Nkegoum B, Taziebou CL, Tekwu EM, Etoa FX, Ngongang J. Evaluation of acute and subacute toxicities of aqueous ethanolic extract of leaves of Senna alata (L.) Roxb (Ceasalpiniaceae). African J. Biotechnol 2006; 5:283–289.
  • 16. Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. African J Biotechnol 2005; 4:685–688.
  • 17. Okigbo RN, Anuagasi CL, Amadi JE. Advances in selected medicinal and aromatic plants indigenous to Africa. J Med Plant Res 2009; 3:086–095.
  • 18. Thomson RH. Naturally Occurring Quinones III. Recent Advances. Chapman and Hall. London 1986.
  • 19. Hattori M, Akao T, Kobashi K, Namba T. Cleavages of the O-and C-glucosyl bonds of anthrone and 10,10`-bianthrone derivatives by human intestinal bacteria. Pharmacology 1993; 47:125–133.
  • 20. Wagner H, Bladt S. Plant Drug Analysis: A Thin Layer Chromatography Atlas. Berlin 1996:53.
  • 21. Picman AK, Ranieri RL, Towers GHN, Lam J. Visualization reagents for sesquiterpene lactones and polyacetylenes on thin-layer chromatograms. J Chromatog 1980; 189:187–198.
  • 22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65:55–63.
  • 23. Betancur-Galvis LA, Saez J, Granados H, Salazar A, Ossa JE. Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem Inst Oswaldo Cruz 1999; 94:531–535.
  • 24. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, De Clercq E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods 1988; 20:309–321.
  • 25. Gyanchandani ND, Nigam IC. Anthraquinone drugs II: inadvertent acetylation of aloe-emodin during preparation of aglycones from crude drugs-UV, IR, and NMR spectra of the products. J Pharm Sci 1969; 58:833–835.
  • 26. Scott AI. Interpretation of the Ultraviolet Spectra of Natural Products. Pergamon Press. New York 1964:286.
  • 27. Pretsch E, Bühlmann P, Affolter C. Structure Determination of Organic Compounds: Tables of Spectral Data. Berlin-Heidelberg 2000.
  • 28. Berhanu E, Dagne E. Aloe-emodin acetate, an anthraquinone derivative from leaves of Kniphofia foliosa. Planta Med 1984; 50:523–524.
  • 29. Jong-Sik J, Jong-Hyun L. Phytochemical and pharmacological aspects of Siraitia grosvenorii. Oriental Pharm Exp Med 2012; 12:233–239.
  • 30. Morreal CE, Sinha DK, White CJ. In vivo antitumor activity of tetrahydrobenz (a) anthraquinone derivatives. Anticancer Res 1990; 10:935–937.
  • 31. Tarasiuk J, Stefanska B, Borowski E. The direct reduction of cytochrome C by some anthraquinone antitumor compounds. Anticancer Drug Des 1996; 11:183–192.
  • 32. Kamei H, Koide T, Kojima T, Hashimoto Y, Hasegawa ML. Inhibition of Cell Growth in Culture by Quinones. Cancer Biother Radiopharm 1998; 13:185–188.
  • 33. Hao NJ, Huang M-P, Lee H. Structure-activity relationships of anthraquinones as inhibitors of 7-ethoxycoumarin O-deethylase and mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinolone. Mutation Res 1995; 328:183–191.
  • 34. Edenharder R, Speth C, Decker M, Platt KL. The inhibition by naphthoquinones and anthraquinones of 2-amino-3-methylimidazo[4,5-f]quinoline metabolic activation to a mutagen: a structure-activity relationship study. Z. Lebens Untersuch Forsch. A Food Res Technol 1998; 207:464–471.
  • 35. Mueller SO, Lutz WK, Stopper H. Factors affecting the genotoxic potency ranking of natural anthraquinones in mammalian cell culture systems. Mutation Res 1998; 414:125–129.
  • 36. Swanbeck G. Interaction between deoxyribonucleic acid and some anthracene and anthraquinone derivatives. Biochim Biophys Acta 1966; 123:630–633.
  • 37. Lewis DVF, Ioannides C, Parke DV. Structural requirements for substrates of cytochromes P-450 and P-448. Chem Biol Interact 1987; 64:39–60.
  • 38. Lin S, Fujii M, Hou DX. Rhein induces apoptosis in HL-60 cells via reactive oxygen species independent mitochondrial death pathway. Arch Biochem Biophys 2003; 418:99–107.
  • 39. Kagedal K, Bironaite D, Ollinger K. Anthraquinone cytotoxicity and apoptosis in primary cultures of rat hepatocytes. Free Radic Res 1999; 31:419–428.
  • 40. Lee HZ. Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 2001; 134:1093–1103.
  • 41. Kumar A, Dhawan S, Aggarwal BB. Emodin (3-methyl-1,6,8-trihydroxy-anthraquinone) inhibits TNFinduced NF-kappaB activation, IkappaB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 1998; 17:913–918.
  • 42. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Role of quinones in toxicology. Chem Res Toxicol 2000; 13:135–160.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d0025e0f-9e4b-4f2c-af9f-e7ced9ec71a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.