PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Comparison of soybean cultivars enriching Cd and the application foreground of the low-accumulating cultivar in production

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Contaminated soil collected from an agricultural field was used to compare Cd enrichment among 20 soybean cultivars to explore their application foregrounds in safe production. The results showed that Cd concentration in beans of 20 soybean cultivars was from 0.23 mg kg⁻¹ to 2.33 mg kg⁻¹ when Cd concentration in soil was 1.98 mg kg⁻¹. Cd enrichment factors of 19 cultivars were lower than 1. Cd translocation factors of all cultivars were lower than 1. As for background soil with 0.15 mg kg⁻¹ Cd, the concentrations of Cd in beans of two soybean cultivars were higher than 0.10 mg kg⁻¹ (an agricultural trade standard of non-pollution food for soybean of China, NY5310-2005). Thus, the use of a low-accumulation soybean cultivar in Cd-contaminated soil should be done carefully and with reserve.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1299-1304,fig.,ref.

Twórcy

autor
  • Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China
  • University of the Chinese Academy of Sciences, Beijing 100039, P.R. China
autor
  • Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China
autor
  • Crop Institute, Liaoning Academy of Agricultural Science, Shenyang, Liaoning 110161, P.R. China
autor
  • Faculty of Agriculture, Goce Delcev Univeristy, Stip 2000, Republic of Macedonia

Bibliografia

  • 1. WANG X., WU Y.Y. The accumulation characteristics of different crops to combined heavy metals. Agro-Environ Protection. 17, 193, 1998.
  • 2. SIMMONS R.W., PONGSAKUL P., CHANEY R.L., SAIYASITPANICH D.S., KLINPHOKLAP S., NOBUNTON W. The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: Implications for human health. Plant Soil. 257, 163, 2003.
  • 3. PETERSON O. Differences in cadmium uptake between plant species and cultivars. Swedish J Agri Sci. 7, 21, 1977.
  • 4. AAD S., YOUNG S., WEST H. Effect of nickel and cadmium on glucosinolate production in Thlaspi caerulescens. Pakistan J Botany. 45, 495, 2013.
  • 5. WAN X.M., LEI M., CHEN T.B., YANG J.X., LIU H.T., CHEN Y. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L. Environ Sci Pollut Res. 22, 16631, 2015.
  • 6. CHEN B., MA X.X., LIU G.Q., XU X.M., PAN F.S., ZHANG J., TIAN S.K., FENG Y., YANG X.E. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape. Environ Sci Pollut Res. 22, 17625, 2015.
  • 7. WEI S.H., BAI J.Y., YANG C.J., ZHANG Q.R., KNORR K., ZHAN J., GAO Q.H. Compound amino acids added in media improved Solanum nigrum L. phytoremediating CdPAHs contaminated soil. Inter J Phytoremediation. 18, 358, 2016.
  • 8. ENRICA R., HELENA CRISTINA S., MAURO GIORGIO M., CRISTINA B. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant. Environ Sci Pollut Res. 23, 12414, 2016.
  • 9. PAULA C., ZYGMUNT MARIUSZ G., IGOR C. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environ Sci Pollut Res. 23, 10693, 2016.
  • 10. LIU W.T., ZHOU Q.X., AN J., SUN Y.B., LIU R. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater. 173, 737, 2010.
  • 11. ZHAN J., WEI S.H., NIU R.C., LI Y.M., WANG S.S., ZHU J.G. Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application. Environ Sci Pollut Res. 20, 2645, 2013.
  • 12. WEI S.H., ANDERS I., FELLER U. Selective uptake, distribution and redistribution of ¹⁰⁹Cd, ⁵⁷Co, ⁶⁵Zn, ⁶³Ni and ¹³⁴Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L. Environ Sci Pollut Res. 21, 7624, 2014.
  • 13. GRANT C.A., CLARKE J.M., DUGUID S., CHANEY R.L. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ. 390, 301, 2008.
  • 14. GREGER M., LOFSTEDT M. Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci. 44, 501, 2004.
  • 15. YU H., WANG J.L., FANG W., YUAN J.G., YANG Z.Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ. 370, 302, 2006.
  • 16. SHUTE T., MACFIE S.M. Cadmium and zinc accumulation in soybean: A threat to food safety? Sci Total Environ. 37, 63, 2006.
  • 17. ARAO T., AE N., SUGIYAMA M., TAKAHASHI M. Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil. 251, 247, 2003.
  • 18. ZHI Y., SUN T., ZHOU Q.X. Assessment of lead tolerance in 23 Chinese soybean cultivars and the effect of lead on their mineral ion complement. Environ Sci Pollut Res. 21, 12909, 2014.
  • 19. ZHI Y., SUN T., ZHOU Q.X., ZHU Y.Q. Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils. J Environ Sci. 35, 108, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cfe12db9-ee19-430e-bde4-5b5ab3f24fe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.