PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Life cycle assessment for enhanced efficiency of small power plants by reducing air input temperature

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This research aimed to study the relevant work relating to environmental evaluation associated with global warming, acidification, eutrophication, and human toxicity from the 120 MW combined-cycle cogeneration power plant through use of a life cycle assessment. The functional units of study were one kWh of electricity and one ton of steam production. The system boundary of this study comprised unit processes related to a gas turbine power plant and thermal power plant using natural gas. Input data including natural gas and demineralized water in the gas turbine process, while oxygen scavenger chemicals such as neutralizing amine and phosphate were included in the steam turbine process. We found that global warming potential and acidification potential came primarily from gas combustion during the production process, while transportation posted a minor contribution, while eutrophication potential and human toxicity caused by NaOCl was 10%. The feasible ways to reduce environmental impacts included cooling down the air temperature prior to being fed to the compressor using the evaporative method and the fogging method. The results found that the fogging method was proven to reduce global warming potential more significantly than the other method. On the other hand, the evaporative method was more effective in terms of acidification, eutrophication, and human toxicity reduction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1781-1793,fig.,ref.

Twórcy

  • Excellence Centre of Eco-Energy (ECEE), Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani, Thailand
  • Excellence Centre of Eco-Energy (ECEE), Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani, Thailand

Bibliografia

  • 1. IPCC. Climate change 2014: Mitigation of climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2014.
  • 2. UNITED NATIONS. Adoption of the Paris agreement. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf., (accessed 02 July 2016), 2015.
  • 3. MINSTRY OF ENERGY. Energy Policy and Planning Office, Thailand Power Development Plan: PDP2015, Thailand, 2015.
  • 4. MINISTRY OF ENERGY. 20-Year Thailand Energy Efficiency Development Plan (2011-2030), Thailand, 2011.
  • 5. MINISTRY OF ENERGY. Department of Alternative Energy Development and Efficiency, Alternative Energy Development Plan: AEDP2015, Thailand, 2015.
  • 6. ALHAZMY M.M., NAJJAR Y.S.H. Augmentation of gas turbine performance using air coolers. Appl Therm Eng. 24, 415, 2004.
  • 7. KANKOMOL B. The study for air temperature reducing technology to improve the gas turbine performance: a case study at small power producer. Master Thesis, King Mongkut’s University of Technology North Bangkok, Thailand, 2011 [In Thai].
  • 8. HEJAZI M.A.S., MONTASER K. Design guide for cool thermal storage. Applied Thermal Engineer Journal. 29, 1830, 1993.
  • 9. AL-IBRAHIM A.M., VARNHAM A. A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia, Appl Therm Eng. 30, 14-15, 1879, 2010.
  • 10. THEODOSIOU G., KORONEOS C., STYLOS N. Environmental impacts of the Greek electricity generation sector. Sustainable Energy Technologies and Assessments. 5, 19, 2014.
  • 11. DZIKUC M., PIWOWAR A. Life cycle assessment as an Eco-management tool within the power industry. Pol J Environ Stud. 24 (6), 2381, 2015.
  • 12. CHEVALIER C., MEUNIER F. Environmental assessment of biogas co- or tri-generation units by life cycle analysis methodology. Appl Therm Eng. 25 (17-18), 3025, 2005.
  • 13. GONZALEZ A., SALA J.M., FLORRES I., LOPEZ L.M. Application of thermoeconomics to the allocation of environmental loads in the life cycle assessment of cogeneration plants. Energy. 28, 557, 2003.
  • 14. MAHLIA T.M.I., CHAN P.L. Life cycle cost analysis of fuel cell based cogeneration system for residential application in Malaysia. Renew Sust Energ Rev. 15 (1), 416, 2011.
  • 15. LI S., GAO L., JIN H. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China. Energ Convers Manage. 112, 91, 2016.
  • 16. GUERRA J.P.M., COLETA JR. J.R., ARRUDA L.C.M., SILVA G.A., KULAY L. Comparative analysis of electricity cogeneration scenarios in sugarcane production by LCA. Int J Life Cycle Assess. 19 (4), 814, 2014.
  • 17. RAMJEAWON T. Life cycle assessment of electricity generation from bagasse in Mauritius. J Clean Prod. 16, 1727, 2008.
  • 18. GIL M.P., MOYA A.M.C., DOMINGUEZ E.R. Life cycle assessment of the cogeneration process in the Cuban sugar industry. J Clean Prod. 41, 222, 2013.
  • 19. MASHOKO L., MBOHWA C., THOMAS V.M. Life cycle inventory of electricity cogeneration from bagasse in the South African sugar industry. J Clean Prod. 39, 42, 2013.
  • 20. SILVA D.A.L., DELAI I., MONTES M.L.D., OMETTO A.R. Life cycle assessment of the sugarcane bagasse electricity generation in Brazil. Renew Sust Energ Rev. 32, 532, 2014.
  • 21. ENERGY REGULATORY COMMISSION. Power Plant Type, Thailand. Available online: http://www.erc.or.th/ERCSPP/MPagePowerPlantType.aspx, (accessed 12 September 2016) [In Thai].
  • 22. ISO14040, Environmental management-Life cycle assessment-Principles and framework (ISO14040:2006), European Standard EN ISO14040, The International Organization for Standardization, Geneva, Switzerland, 2006.
  • 23. ASDRUBALI F., BALDINELLI G., D’ALESSANDRO F., SCRUCCA F. Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew Sust Energ Rev. 42, 1113, 2015.
  • 24. BHANDARI R., TRUDEWIND C.A., ZAPP P. Life cycle assessment of hydrogen production via electrolysis-a review. J Clean Prod. 85, 151, 2014.
  • 25. EVANGELISTI S., LETTIERI P., BORELLO D., CLIFT R. Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manage. 24 (1), 226, 2014.
  • 26. TURCONI R., BOLDRIN A., ASTRUP T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew Sust Energ Rev. 28, 555, 2013.
  • 27. LENZEN M., TRELOAR G. Life-Cycle inventories toward upstream production layers: implications for life-cycle assessment. J Ind Ecol. 6 (3-4), 137, 2008.
  • 28. FINNVEDEN G., HAUSCHILD M.Z., EKVALL T., GUNIEE J., HEIJUNGS R., HELLWEG S., KOEHLER A., PENNINGTON D., SUH S. Recent developments in life cycle assessment. J Environ Manage. 91(1), 1, 2009.
  • 29. ISO14044, Environmental management-Life cycle assessment-Requirements and guidelines (ISO14044:2006), European Standard EN ISO14044, The International Organization for Standardization, Geneva, Switzerland, 2006.
  • 30. REBITZER G., EKVALL T., FRISHKNECHT R., HUNKELER D., NORRIS G., RYDBERG T., SCHIMIDT W.P., SUH S., WEIDEMA B.P., PENNINGTON D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ Int. 30 (5), 701, 2004.
  • 31. ATILGAN B., AZAPAGIC A. Assessing the environmental sustainability of electricity generation in Turkey on a life cycle basis. Energies. 9 (1), 31, 2016.
  • 32. CLARENS F., ESPI J.J., RAFAEL G.M., ROVIRA M., VEGA L.F. Life cycle assessment of CaO looping versus amine-based absorption for capturing CO₂ in a subcritical coal power plant. Int J Greenh Gas Control. 46, 18, 2016.
  • 33. GARCIA-GUSANO D., IRIBARREN D., MARTIN-GAMBOA M., DUFOUR J., ESPEGREN K., LIND A. Integration of life-cycle indicators into energy optimization models: the case study of power generation in Norway. J Clean Prod. 112 (4), 2693, 2016.
  • 34. BRIZMOHUN R., RAMJEAWON T., AZAPAGIC A. Life cycle assessment of electricity generation in Mauritius. J Clean Prod. 106, 565, 2015.
  • 35. CORONA B., RUIZ D., SAN M.G. Life cycle assessment of a HYSOL concentrated solar power plant: analyzing the effect of geographic location. Energies. 9 (6), 413, 2016.
  • 36. DZIKUC M., TOMASZEWSKI M. The effects of ecological investments in the power industry and their financial structure: a case study for Poland. J Clean Prod. 118, 48, 2016.
  • 37. ECOINVENT CENTRE. Ecoinvent Database Ver.2.2. categories for process, Ecoinvent Centre, Swiss Centre for Life Cycle Inventories, Zurich, Switzerland, 2010.
  • 38. IPCC. Climate Change 2007: the Physical Science Basis. Intergovernmental Panel on Climate Change, New York, USA, 2007.
  • 39. SPATH P.L., MANN M.K. Life cycle assessment of a natural gas combined-cycle power generation system, National Renewable Energy Laboratory, Midwest Research Institute, Colorado, USA, 2000.
  • 40. MTEC. Thai national life cycle inventory database, National Metal and Materials Technology Center, National Science and Technology Development Agency of Thailand, Pathumthani, Thailand, 2014.
  • 41. FANTIN V., GIULIANO A., MANFREDI M., OTTAVIANO G., STEGANOVA M., MASONI P. Environmental assessment of electricity generation from an Italian anaerobic digestion plant. Biomass Bioenerg. 83, 422, 2015.
  • 42. LIJO L., GONZALEZ-GARCIA S., BACENETTI J., FIALA M., FEIJOO G., LEMA J.M., MOREIRA M.T. Life cycle assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew Energy. 68, 625, 2014.
  • 43. HONDO H. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy. 30 (11-12), 2042, 2005.
  • 44. BANAR M., COKAYGIL Z. Life cycle assessment of electricity production from natural gas combined cycle. Chem Eng Trans. 21, 157, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cf2d744e-360a-4a67-b82d-803fc7edd7a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.