PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |

Tytuł artykułu

Decolorization of crystal violet by mono and mixed bacterial culture techniques using optimized culture conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Acinetobacter baumannii, Corynebacterium sp., Cytophaga columnaris, Escherichia coli, Pseudomonas fluorescens, and P. luteola bacteria isolated from the sewage disposal lake in Jeddah, Saudi Arabia, can decolorize crystal violet (CV). P. fluorescens was the most potent CV decolorizer, and Corynebacterium sp. was also able to perform this function. Five different media were tested to determine which medium formulation favoured CV decolorization by P. fluorescens and Corynebacterium sp. The basal medium favoured the highest decolorization percentage of 50 μg CV/ml after 72 h of incubation. P. fluorescens was sufficient to decolorize concentrations of CV up to 150 μg/ml after 92 h of incubation. A mixed bacterial culture of P. fluorescens and Corynebacterium sp. more fully decolorized CV than did a single; the decolorization period for the mixed culture was reduced by more than 37% and the decolorization rate (μg/h) increased by up to 59%. Two-phase multifactorial optimization statistical analysis (Plackett-Burman and BoxBehnken) were carried out to optimize culture conditions in order to increase the ability of a mixed culture to decolorize 150 μg CV/ml. Under the optimized conditions the decolorization period was reduced by more than 22% and the decolorization rate was increased by more than 48%. Crystal violet can be efficiently decolorized by P. fluorescens and Corynebacterium sp. The decolorization process is markedly influenced by the composition of the cultivation medium and the concentration of CV. A mixed culture of P. fluorescens and Corynebacterium sp. was much more efficient at decolorizing CV than was a monoculture. The culture conditions were considerably optimized using Plackett-Burman and BoxBehnken statistical experimental designs.

Wydawca

-

Rocznik

Tom

22

Numer

5

Opis fizyczny

p.1297-1306,fig.,ref.

Twórcy

  • Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Bibliografia

  • 1. AZMI W., SANI R. K., BANERJEE U. C. Biodegradation of triphenylmethane dyes. Enzyme Microb. Tech. 22, (3), 185, 1998.
  • 2. AU W., PATHAK S., COLIE C.L., HSU T.C. Cytogenetic toxicity of gentian violet and crystal violet on mammalian cells in vitro. Mutat. Res., 58, (2-3), 269, 1978.
  • 3. FAN H.J., HUANG S.T., CHUNG W.H., JAN J.L., LIN W.Y., CHEN C.C. Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimization and intermediate separation and identification. J. Hazard Matter. 171, (1-3), 1032, 2009.
  • 4. CHENG M., SONG W., MA W., CHEN C., ZHAO J., LIN J., ZHU H. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation. Appl. Catal. B-Environ. 77, (3-4), 355, 2008.
  • 5. MINERO C., PELLIZZARI P., MAURINO V., PELIZZETTI E., VIONE D. Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Appl. Catal. B-Environ. 77, (3-4), 308, 2008.
  • 6. ROBINSON T., MCMULLAN G., MARCHANT R., Nigam P. Remediation of dyes in textile effluents: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77, (3), 247, 2001.
  • 7. CHEN K.C., WU J.Y., LIOU D.J., HWANG S.C.J. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101, 57, 2003.
  • 8. DANESHVAR N., KHATAEE A.R., RASOULIFARD M.H., Pourhassan M. Biodegradation of dye solution containing Malachite Green: optimization of effective parameters using Taguchi method. J. Hazard Matter. 143, 214, 2007.
  • 9. CHANG J.S., KUO T.S., Kinetics of bacterial decolorization of azo dye with Escherichia coli NO₃. Bioresource Technol. 75, 107, 2000.
  • 10. ISIK M., SPONZA D.T. Effect of oxygen on decolorization of azo dye by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochem. 38, 1183, 2003. 11. KHEHRA M.S., SAINI H.S., SHARMA D.K., CHADHA B.S., CHIMNI S.S. Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res. 39, 5135, 2005.
  • 12. CHEN B.Y., CHEN S.Y., LIN M.Y., CHANG J.S. Exploring bioaugmentation strategies for azo dye decolorization using a mixed consortium of Pseudomonas luteola and Escherichia coli. Process Biochem. 41, 1571, 2006.
  • 13. MOOSVI S., KHER X., MADAMWAR D. Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigments 74, 723, 2007.
  • 14. VILAR V.J.P., BOTELHO C.M.S., BOAVENTURA R.A.R. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behavior. J. Hazard Matter. 147, 120, 2007.
  • 15. DAFALE N., RAO N., MESHRAM S., WATE U. Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium Biostimulation and halo tolerance. Bioresource Technol. 99, 2552, 2008.
  • 16. KALYANI D.C., PATIL P.S., JADHAV J.P., GOVINDWAR S.P. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technol. 99, 4635, 2008.
  • 17. KAUSHIK P., MALIK A. Fungal dye decolorization: Recent advances and future potential. Environmental International Journal 35, 127, 2009.
  • 18. YU J.X., LI B.H., SUN X.M., YUAN J., CHI R.A. Polymer modified biomass of baker,s yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. J. Hazard Matter. 168, 1147, 2009.
  • 19. AKSU Z., ERTUGRUL S., DONMEZ G. Methylene blue biosorption by Rhizopus arrhizus: effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chem. Eng. J. 158, 474, 2010.
  • 20. ACEMIOGLU B., KERTMEN M., DIGRAK M., ALMA M. H. Use of Aspergillus wentii for biosorption of methylene blue from aqueous solution. African Journal of Biotechnology 9, (6), 874, 2010.
  • 21. GHANEM K.M., AL-GARNI S.M., BIAG A. K. Statistical optimization of cultural conditions for decolorization of methylene blue by mono and mixed bacterial culture techniques. African Journal of Microbiology Research 5, (15), 2187, 2011.
  • 22. PANDEY A., SINGH P., IYENGAR L. Bacterial decolorization and degradation of azo dyes. Int. Biodeter. Biodegr. 59, 73, 2007.
  • 23. KHALID A., ARSHAD M., CROWLEY D.E. Perspectives for improving azo dye biotreatment systems using bioaugmentation. In: Atacag Erkurt H (Ed). The handbook of environmental chemistry: biodegradation of azo dyes, Vol. 9. Springer-Verlag, Berlin Heidelberg. pp. 1-37, 2010.
  • 24. RAMYA M., IYAPPAN S., MANJU A., JIFFE J.S. Biodegradation and decolorization of acid red by Acinetobacter radioresistens. Journal of Bioremediation and Biodegradation 1, 1, 2010.
  • 25. PAVAN F.A., GUSHIKEM Y., MAZZOCATO A.C., DIAS S.L.P., LIMA E.C. Statistical design of experiments as a tool for optimizing the batch conditions to methylene blue biosorption on yellow passion fruit and mandarin peels. Dyes Pigments 72, (2), 256, 2005.
  • 26. EL-SERSEY N.A. Bioremediation of methylene blue by Bacillus thuringiensis 4G1: application of statistical designs and surface plots for optimization. Biotechnology 6, (1), 34, 2007.
  • 27. BANAT I.M., NIGAM P., MCMULLAN G., MARCHANT R. The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environmental International Journal 23, (4), 547, 1997.
  • 28. WONG P.K., YUEN P.Y. Decolorization and biodegradation of methyl red by Klebsiella pneumonia, RS-13. Water Res. 30, (7), 1736, 1996.
  • 29. BRENNER D. J., KRIEG N.R., STALEY J.T. Bergey's Manual of Systematic Bacteriology. Vol. 2, The protobacteria, second edition, Springer, 2005.
  • 30. EL-SERSEY N.A. Microbial catabolism of some marine organic pollutants: the development of bioremediation system. Ph.D Thesis, Faculty of Science, Alexandria University. Alexandria, Egypt, 2001.
  • 31. EL-NAGGAR M.A., EL-AASAR S.A., BARKAT K.I. Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa. Water Res. 38, 4313, 2004.
  • 32. TONY B.D., GOYAL D., KHANNA S. Decolorization of textile azo dyes by aerobic bacterial consortium. Int. Biodeter. Biodegr. 63, 462, 2009.
  • 33. PIOO S.S., PHOTHILANKA P., OHMOMO S. Decolorization of molasses wastewater by a strain no BP103 acetogenic bacteria. J. Biotechnol. 90, 31, 2003.
  • 34. MOHANA S., DEAI C., MADAMWAR D. Biodegradation and decolourization of azo dyes. American Public Health Association. Washington, DC/ New York, 2008.
  • 35. PLACKETT R.L., BURMAN J.P. The design of optimum multifactorial experiments. Biometrical J. 33, 305, 1946.
  • 36. BOX G.E.P., BEHNKEN D.W. Some new three level designs for the study of quantitative variables. Technometrics 2, 455, 1960.
  • 37. RAFII F., FRANKLIN W., CERNIGLIA C.E. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microb. 56, 2146, 1990.
  • 38. FORGACS E., CSERHATI T., OROS G. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953, 2004.
  • 39. VIJAYARAGHAVEN K., WON S.W., MAO Y., YUN S. Chemical modification of Corynebacterium glutamicum to improve methylene blue biosorption. Chem. Eng. J. 145, 1, 2008.
  • 40. PHUGARE S.S., KALYANI D.C., SURWASE S.N., JADHAV J.A. Ecofriendly degradation and detoxification of textile effluent by a developed bacterial consortium. Ecotox. Environ. Safe. 74, 1288, 2011.
  • 41. SHARMA P., SINGH L., DILBAGHI N. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fersenius. J. Hazard Matter. 161, 1081, 2009.
  • 42. CHAUBE P., INDURKAR H., MOGHE S. Biodegradation and decolorization of dye by mix consortia of bacteria and study of toxicity on Phaseolus mungo and Triticum aestivum. Asiatic Journal of Biotechnology Research 1, 45, 2010.
  • 43. SUGUMAR R.W., SADANAN S. Combined anaerobicaerobic bacterial degradation of dyes. E-Journal of Chemistry 7, (3), 739, 2010.
  • 44. ALAM M.D.Z., MANSOR M.F., JALAL K. C. A. Optimization of decolorization of methylene blue lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. J. Hazard Matter. 162, 708, 2009.
  • 45. AYED L., KHELIFI E., BEN JANNET H., MILADI H., CHEREF A., ACHOUR S., BAKHROUF A. Response surface methodology for decolorization of azo dye methyl orange by bacterial consortium: produced enzymes and metabolites characterization. Chem. Eng. J. 165, 200, 2010.
  • 46. DU L., YANG Y., LI G., WANG S., JIA X., ZHAO Y. Optimization of heavy metal-containing dye Acid Black 172 decolorization by Pseudomonas sp. DY1 using statistical designs. Int. Biodeter. Biodegr. 64, 566, 2010.
  • 47. PARSHETTI G.K., PARSHETTI S.G., TELKE A.A., KALYANI D.C., DOONG R.A., GOVINDWAR S.P. Biodegradation of crystal violet by Agrobacterium radiobacter. J. Environ. Sci. 23, (8), 1384, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ce82e3b9-0ead-4ad1-b064-182669ffc9e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.