PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 19 | 1 |

Tytuł artykułu

Methanotrophs responsible for methane oxidation in natural peats from Polesie Lubelskie Region

Treść / Zawartość

Warianty tytułu

PL
Metanotrofy odpowiedzialne za utlenianie metanu w naturalnych torfowiskach Polesia Lubelskiego

Języki publikacji

EN

Abstrakty

EN
The potential of methanotrophic activity (MTA) has been investigated under labo-ratory conditions in three types of peatland profiles: high (H), transition (T) and low (L) originating from Polesie Lubelskie Region. Selected peat samples differed in respect of pH, TOC, von Post index and moisture. The experiment was conducted at natural moisture (198-719 %w/w) with dif-ferent ranges of both, temperature (5, 10 and 20°C) and CH4 enrichment (1 and 5%v/v). The highest MTA (19.69-155.79 mg CH4kg D.W.-1 d-1) was observed at 20°C. Regardless of temperature, MTA was lower (1.38-51.16 mg CH4 kg D.W.-1 d-1) when peat samples were incubated in atmosphere enriched in 1% than in 5% CH4 v/v (4.75-191.26 mg CH4kg D.W.-1 d-1). Strong influence of tem-perature and sampling sites on MTA was also noted. Total DNA was isolated from the most active (20°C, 5% CH4 v/v) peat samples from each site and the PCR (polimerase chain reaction) amplify-ing of genes pmoA (primers A189f/mb661r) and sequence 16S rRNA (primers Type If /Type Ir and Type IIf/Type IIr) specific for methanotrophic bacteria were carried out. Positive results of PCR with primers of pmoA gene after sequencing confirmed that methanotrophs from L point belong to family Methylococcaceae, while 16S rRNA gene sequences from microorganisms inhabiting H peat demonstrated the highest similarity to genus Methylocystis and Methylosinus.
PL
Potencjalna aktywność metanotroficzna (MTA) została wyznaczona w warunkach laboratoryjnych, w torfach pochodzących z torfowisk reprezentujących typy: wysokie (H), przejściowe (T) i niskie (L), zlokalizowanych na obszarze Polesia Lubelskiego. Badane torfowiska różniły się między sobą pod względem: pH, zawartości TOC, indeksem von Posta oraz wilgotności. Inkubacje przeprowadzono wnastępujących warunkach: wilgotność w stanie naturalnym (198-719 %w/w), temperatury: 5, 10 i 20oC, oraz atmosfera wzbogacona w 1 oraz 5% CH4 (v/v). Niezależnie od temperatury, niższe wartosci MTA (1,38-51,16 mg CH4 kg D.W.-1 d-1) wyznaczono dla torfu inkubowanego w atmosferze wzbogaconej o 1% CH4(v/v). Na MTA istotny wpływ wykazywała również temperatura oraz lokalizacja punktu poboru prób. Z najaktywniejszych metanotroficznie torfów (20oC, 5% CH4 v/v) izolowano całkowite DNA , na którym przeprowadzano reakcje PCR powielające fragment genu pmoA (startery A189f/mb661r) oraz sekwencję 16S rRNA (startery Typ If /Typ Ir oraz Typ IIf /Typ IIr), specyficzne dla bakterii metanotroficznych. Pozytywny wynik reakcji PCR ze starterami genu pmoA otrzymano dla materiału pochodzącego ze stanowiska L, sekwencjonowanie wskazało na obecność w tym materiale metanotrofów w największym stopniu podobnych do gatunków z rodziny Methylococcaceae, natomiast na podstawie sekwencji genu 16S rRNA pochodzącego z mikroorganizmów zasiedlających stanowisko H stwierdzono ich duże podobieństwo do przedstawicieli rodzaju Methylocystis i Methylosinus.

Wydawca

-

Czasopismo

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.181-193,fig.,ref.

Twórcy

  • Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Al.Krasnicka 102, 20-718 Lublin, Poland
autor

Bibliografia

  • Auman A.J., Stolyar S., Costello A.M., Lidstrom M.E., 2000. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Applied and Environmental Microbiology, 66(12), 5259-5266.
  • Berestovskaya Yu., Rusanov I.I., Vasil’eva L.V., Pimenov N.V., 2005. The processes of methane production and oxidation in the soils of the Russian Arctic Tundra.Microbiology, Vol. 74 (2), 221-229.
  • Blast Local Alignment Search Tool, http://www.ncbi.nlm.nih.gov/blast
  • Chan A.S.K., Parkin T.B., 2001.Methane oxidation and production activity in soils from natural and agricul-tural ecosystems. Published in Journal of Environmental Quality, 30, 1896-1903.
  • Chen Y., Dumont M.G., Cébron A., Murrell J.C., 2007. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environmental Microbi-ology, 9(11), 2855-2869.
  • Chen Y., Dumont M.G., McNamara N.P., Chamberlaine P.M., Bodrossy L., Stralis-Pavese, Murrell J.C., 2008. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environmental Microbiology, 10(2), 446-459.
  • Chen Y., Murrell J.C., 2010. The aerobic methane oxidizing bacteria (Methanotrophs) in Timmis K. N. (ed.), Handbook of Hydrocarbon and Lipid Microbiology. DOI 10.1007/978-3-540-77587-4_143,Springer-Verlag Berlin Heidelberg.
  • Costello A.M., Lidstrom M.E., 1999. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Applied and Environmental Microbiology, 65(11), 5066-5074.
  • Dedysh S.N., 2009. Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology, 78 (6), 655-669.
  • Dumont M.G., Pommerenke P., Casper P., Conrad R., 2011. DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environmental Microbiology, 13(5), 1153-1167.
  • Dunfield P.F, Khmelenina V.N, Suzina N. E, Trotsenko Y.A., Dedysh S.N., 2003. Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int. J. Syst. Evol. Microbiol., 53,1231-1239.
  • Dunfield P.F., Dedysh S.N., 2010. Acidic Environments in Timmis K.N. (ed.), Handbook of Hydrocarbon and Lipid Microbiology. DOI 10.1007/978-3-540-77587-4_143, Springer-Verlag Berlin Heidelberg.
  • Galchenko V.F., Nesterov A.I., Andreev L.V., Trotsenko Y.A., 1980. New species of methanotrophic bacte-ria Methylocystis. Pushchino: USSR Academy of Sciences.
  • Heyer J., Galchenko V.F., Dunfield P.F., 2002. Molecular phylogeny of type II methaneoxidizing bacteria isolated from various environments.Microbiology, 148, 2831-2846.
  • Holmes A.J., Owens N.J.P., Murrell J.C., 1996, Molecular analysis of enrichment cultures of marine meth-ane oxidising bacteria. Journal of Experimental Marine Biology and Ecology, 203, 27-38.
  • Hua S.F., Li S.B., Tan H.D., 2007. Molecular sequencing and analysis of soluble methane monooxygenase gene clusters from methanotroph Methylomonas sp. GYJ3. World J. MicroBiol. Biotechnol., 23, 323-330.
  • Kettunen A., Kaitala V., Lehtinen A., Lohila A., Alm J., Silvola J., Martikainen P.J., 1999. Methane produc-tion and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology and Biochemistry, 31, 1741-1749.
  • Knief C., Dunfield P.F., 2005. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environmental Microbiology, 79, 1307-1317.
  • Knoblauch C., Zimmermann U., Blumenberg M., Michaelis W., Pfeiffer E.M., 2008. Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biology and Biochemistry, 40, 3004-3013.
  • Liebner S., Rublack K., Stuehrmann T., Wagner D., 2009. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microbial Ecology, 57(1), 25-35.
  • Lüke C., Krause S., Cavigiolo S., Greppi D., Lupotto E., Frenzel P., 2010. Biogeography of wetland rice methanotrophs. Environ Microbiol., 12(4), 862-72.
  • McDonald I.R., Bodrossy L., Chen Y., Murrell J.C., 2008. Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology, 74(5), 1305-1315.
  • Megonigal J.P., Schlesinger W.H. 2002. Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 16(4).
  • Moore T.R., Dalva M.N 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biology and Biochemistry, 29(8), 1157-1164.
  • Murrell J.C., 2010. The aerobic methane oxidizing bacteria (Methanotrophs) in Timmis K. N. (ed.), Hand-book of Hydrocarbon and Lipid Microbiology. DOI 10.1007/978-3-540-77587-4_143, Springer-Verlag Berlin Heidelberg.
  • Qiu Q., Noll M., Abraham W.R., Lu Y., Conrad R., 2008. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2(6), 602-614.
  • Radajewski S., Webster G., Reay D. S., Morris S. A., Ineson P., Nedwell D. B., Prosser J. I., Murrell J. C., 2002. Identification of active methylotroph populations in an acidic forest soil by stable isotope probing. Microbiology, 148, 2331-2342.
  • Radwan S. (ed.) 2003. Environmental base for the protection and restoration of peat-water ecosystems in the functional area of the Poleski National Park. Environmental monograph (in Polish). Institute of Agro-physics PAS, Lublin.
  • Sambrook J., Russell D.W., 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Har-bor Laboratory Press. Cold Spring Harbor, New York.
  • Shrestha M., Abraham W.R., Shrestha P.M., Noll M., Conrad R., 2008. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analy-ses of pmo gene and stable isotope probing of phospholipid fatty acids. Environ. Microbiol., 10(2), 400-412.
  • Szafranek-Nakonieczna A., Bennicelli R.P., 2010. Ability of peat soil to oxidize methane and effect of temperature and layer deposition. Polish Journal of Environmental Studies, 19(4), 805-810.
  • Tavormina P.L., Ussler W., Orphan V.J., 2008. Planktonic and sediment-associated aerobic metha-notrophs in two seep systems along the North American margin. Appl. Environ. Microbiol., 74 (13), 3985-3995.
  • Trotsenko J.A., Khmelenina V.N., 2005. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiology Ecology, 53, 15-26.
  • Vecherskaya M.S., Galchenko V.F., Sokolova E.N., Samarkin V.A., 1993. Activity and species com-position of aerobic methanotrophic communities in tundra soils. Curr. Microbiol., 27, 181-184.
  • Wartiainen I., Hestnes A.G., McDonald I.R., Svenning M.M., 2006. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil. Svalbard, Norway (78 degrees N), International Journal of Systematic and Evolutionary Microbiology, 56(PT 3), 541-547.
  • Whalen S.C., Reeburgh W.S., 1996. Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biology and Biochemistry, no 10/11, 1271-1281.
  • Wojciechowski I. Szczurowska A., 2002. Peat ecosystems. In: Radwan, S. (ed.). Poleski National Park, Environmental monograph (in Polish), Institute of Agrophysics PAS, Lublin, 161-174.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ce471b60-ed25-48ae-81b8-5405068a46dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.