PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 15 | 1 |

Tytuł artykułu

Long-term cultivation of an aerobic granular activated sludge

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

http://www.ejpau.media.pl

Twórcy

  • Institute of General and Ecological Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz , Poland
autor
autor

Bibliografia

  • 1. Wang Q., Du G., Chen J., 2004. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochemistry, 39, 557-563.
  • 2. Qin L., Tay J.-H., Liu Y., 2004. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry, 39, 579-584.
  • 3. Liu Y., Tay J.-H., 2002. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 36, 1653-1665.
  • 4. Liu L., Wang Z., Yao J., Sun X., Cai W., 2005. Investigation on the properties and kinetics of glucose-fed aerobic granular sludge. Enzyme and Microbial Technology, 36, 307-313.
  • 5. Van Loosdrecht M.C.M., Eikelboom D., Gjaltema A., Mulder A., Tijhuis L., Heijnen J.J., 1995. Biofilm structures. Water Sci. Technol., 32, 35-43.
  • 6. Adav S.S., Lee D.-J., Show K.-Y., Tay J.-H., 2008. Aerobic granular sludge: Recent advances. Biotechnology Advances, 26, 411-423.
  • 7. Beun J.J., Hendriks A., van Loosdrecht M.C.M., Morgenroth E., Wilderer P.A., Heijnen J.J., 1999. Aerobic granulation in a sequencing batch reactor. Water Research, 33, 2283-2290.
  • 8. Wang Z.-W., Liu Y., Tay J.-H., 2005. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol., 69, 469-473.
  • 9. Li Y., Liu Y., Shen L., Chen F., 2008. DO diffusion profile in aerobic granule and its microbiological implications. Enzyme and Microbial Technology, 43, 349-354.
  • 10. Li Y., Liu Y., 2005. Diffusion of substrate and oxygen in aerobic granule. Biochemical Engineering Journal, 27, 45-52.
  • 11. De Kreuk M.K., Heijnen J.J., van Loosdrecht M.C.M., 2005. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90, 761-769.
  • 12. Xia L.-P., Zhang H.-M., Wang X.-H., 2007. An effective way to select slow-growing nitrifying bacteria by providing a dynamic environment. Bioprocess and Biosyst. Eng., 30, 383-388.
  • 13. Liu Y., Yang S.-F., Tay J.-H., 2004. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. Journal of Biotechnology, 108, 161-169.
  • 14. Thanh B.X., Visvanathan Ch., Aim R.B., 2009. Characterization of aerobic granular sludge at various organic loading rates. Process Biochemistry, 44, 242-245.
  • 15. Moy B.Y.-P., Tay J.-H., Toh S.-K., Liu Y., Tay S.T.-L., 2002. High organic loading influences the physical characteristics of aerobic sludge granules. Letters in Applied Microbiology, 34, 407-412.
  • 16. Qin L., Liu Y., Tay J.-H., 2004. Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering Journal, 21, 47-52.
  • 17. Wang Z.-W., Liu Y., Tay J.-H., 2006. The role of SBR mixed liquor volume exchange ratio in aerobic granulation. Chemosphere, 62, 767-771.
  • 18. Pan S., Tay J.-H., He Y.-X., Tay S.T.-L., 2004. The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Letters in Applied Microbiology, 38, 158-163.
  • 19. Thanh B.X., Visvanathan Ch., Spérandio M., Aim R.B., 2008. Fouling characterization in aerobic granulation coupled baffled membrane separation unit. Journal of Membrane Science, 318, 334-339.
  • 20. Jiang H.-L., Tay J.-H., Tay S.T.-L., 2002. Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Letters in Applied Microbiology, 35, 439-445.
  • 21. Wang S.-G., Liu X.-W., Gong W.-X., Gao B.-Y., Zhang D.-H., Yu H.-Q., 2007. Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technology, 98, 2142-2147.
  • 22. Schwarzenbeck N., Borges J.M., Wilderer P.A., 2005. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl. Microbiol. Biotechnol, 66, 711-718.
  • 23. McSwain B.S., Irvine R.L., Wilderer P.A., 2004. The effect of intermittent feeding on aerobic granule structure. Water Sci. Technol., 49, 19-25.
  • 24. Liu Y.-Q., Tay J.-H., 2006. Variable aeration in sequencing batch reactor with aerobic granular sludge. Journal of Biotechnology, 124, 338-346.
  • 25. Chen Y., Jiang W., Liang D.T., Tay J.-H., 2007. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors. Appl. Microbiol. Biotechnol, 76, 1199-1208.
  • 26. Mosquera-Corral A., de Kreuk M.K., Heijnen J.J., van Loosdrecht M.C.M., 2005. Effects of oxygen concentration on N- removal in an aerobic granular sludge reactor. Water Research, 39, 2676-2686.
  • 27. Zheng Y.-M., Yu H.-Q., Liu S.-J., Liu X.-Z., 2006. Formation and instability of aerobic granules under high organic loading conditions. Chemosphere, 63, 1791-1800.
  • 28. Morgenroth E., Sherden T., van Loosdrecht M.C.M., Heijnen J.J., Wilderer P.A., 1997. Aerobic granular sludge in a sequencing batch reactor. Water Research, 31, 3191-3194.
  • 29. APHA, Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC, USA, 1998.
  • 30. Zheng Y.-M., Yu H.-Q., Sheng G.-P., 2005. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochemistry, 40, 645-650.
  • 31. Rosenberg, M., Gutnick D., Rosenberg E., 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell- surface hydrophobicity. FEMSMicrobiol. Lett, 9, 29-33.
  • 32. Chen Y., Jiang W., Liang D.T., Tay J.-H., 2008. Aerobic granulation under the combined hydraulic and loading selection pressures. Bioresource Technology, 99, 7444-7449.
  • 33. Ergüder T.H., Demirer G.N., 2005. Investigation of granulation of a mixture of suspended anaerobic and aerobic cultures under alternating anaerobic/microaerobic/aerobic conditions. Process Biochemistry, 40, 3732-3741.
  • 34. Liu Y., Tay J.-H., 2004. State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 22, 533-563.
  • 35. Hailei W., Guangli Y., Guosheng L., Feng P., 2006. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment. Biochemical Engineering Journal, 28, 99-103.
  • 36. Liu Y., Wang Z.-W., Liu Y.-Q., Qin L., Tay J.-H., 2005. A generalized model for settling velocity of aerobic granular sludge. Biotechnol. Prog, 21, 621-626.
  • 37. Liu Y., Yang S.-F., Tay J.-H., Liu Q.-S., Qin L., Li Y., 2004. Cell hydrophobicity is a triggering force of biogranulation. Enzyme and Microbial Technology, 34, 371-379.
  • 38. Beun J.J., van Loosdrecht M.C.M., Heijnen J.J., 2002. Aerobic granulation in a sequencing batch airlift reactor. Water Research, 36, 702-712.
  • 39. Ni B.-J., Yu H.-Q., Sun Y.-J., 2008. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Research, 42, 1583-1594.
  • 40. Bao R., Yu S., Shi W., Zhang X., Wang Y., 2009. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature. Journal of Hazardous Materials, 168, 1334-1340.
  • 41. Qin L., Liu Y., 2006. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor. Chemosphere, 63, 926-933.
  • 42. Beun J.J., Verhoef E.V., van Loosdrecht M.C.M., Heijnen J.J., 2000. Stoichiometry and kinetics of poly-b-hydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures. Biotechnology and Bioengineering, 68, 496-507.
  • 43. Beun J.J., Heijnen J.J., van Loosdrecht M.C.M., 2001. N-removal in a granular sludge sequencing batch airlift reactor. Biotechnology and Bioengineering, 75, 82-92.
  • 44. Qin L., Liu Y., Tay J.-H., 2005. Denitrification on poly-P-hydroxybutyrate in microbial granular sludge sequencing batch reactor. Water Research, 39, 1503-1510.
  • 45. Wang Z.-W., Liu Y., Tay J.-H., 2007. Biodegradability of extracellular polymeric substances produced by aerobic granules. Appl. Microbiol. Biotechnol., 74, 462-466.
  • 46. Liu Y., Lin Y.-M., Tay J.-H., 2005. The elemental compositions of P-accumulating microbial granules developed in sequencing batch reactors. Process Biochemistry, 40, 3258-3262.
  • 47. Tay J.-H., Liu Q.-S., Liu Y., 2001. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology, 91, 168-175.
  • 48. Zhang L., Feng X., Zhu N., Chen J., 2007. Role of extracellular protein in the formation and stability of aerobic granules. Enzyme and Microbial Technology, 41, 551-557.
  • 49. Watanabe K., Miyashita M., Harayama S., 2000. Starvation improves survival of bacteria introduced into activated sludge. Applied and Environmental Microbiology, 66, 3905-3910

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ce378d1b-8145-46e3-979d-06075cbacee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.