PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 3 |

Tytuł artykułu

RhoA/Rock2/Limk1/cofilin1 pathway is involved in attenuation of neuronal dendritic spine loss by paeonol in the frontal cortex of D‑galactose and aluminum‑induced Alzheimer’s disease‑like rat model

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Alzheimer’s disease (AD) has become the most prevalent neurodegenerative disorder. Given the pathogenesis of AD is unclear, there is currently no drug approved to halt or delay the progression of AD. Therefore, it is pressing to explore new targets and drugs for AD. In China, polyphenolic Chinese herbal medicine has been used for thousands of years in clinical application, and no toxic effects have been reported. In the present study, using D‑galactose and aluminum‑induced rat model, the effects of paeonol on AD were validated via the Morris water maze test, open field test, and elevated plus maze test. Neuronal morphology in frontal cortex was assessed using ImageJ’s Sholl plugin and RESCONSTRUCT software. RhoA/Rock2/Limk1/cofilin1 signaling pathway‑related molecules were determined by Western blotting. Cofilin1 and p‑cofilin1 were analyzed by immunofluorescence. Results showed that pre‑treatment with paeonol attenuated D‑galactose and aluminum‑induced behavioral dysfunction and AD‑like pathological alterations in the frontal cortex. Accompanied by these changes were the alterations in the dendrite and dendritic spine densities, especially the mushroom‑type and filopodia‑type spines in the apical dendrites, as well as actin filaments. In addition, the activity and intracellular distribution of cofilin1 and the molecules RhoA/Rock2/Limk1 that regulate the signaling pathway for cofilin1 phosphorylation have also changed. Our data suggests that paeonol may be through reducing Aβ levels to alleviate the loss of fibrillar actin and dendrites and dendritic spines via the Rho/Rock2/Limk1/cofilin1 signaling pathway in the frontal cortex, and ultimately improving AD‑like behavior.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

3

Opis fizyczny

p.225-244,fig.,ref.

Twórcy

autor
  • College of Life Science, Anhui Normal University, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China
  • Anhui College of Traditional Chinese Medicine, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China
  • Department of Anatomy, Wannan Medical College, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China
autor
  • College of Life Science, Anhui Normal University, Wuhu, China

Bibliografia

  • Alzheimer’s Association (2019) Alzheimer’s disease facts and figures, Alz‑ heimer’s Dementia, pp. 321–387.
  • Ameen-Ali KE, Wharton, SB, Simpson, JE, Heath PR, Sharp P, Berwick J (2017) Neuropathology and behavioural features of transgenic mu‑ rine models of Alzheimer’s disease. Neuropathol Appl Neurobiol 43: 553–570.
  • Anderson RM, Hadjichrysanthou C, Evans S, Wong MM (2017) Why do so many clinical trials of therapies for Alzheimer’s disease fail? Lancet 390: 2327–2329.
  • Andrianantoandro E, Pollard, TD (2006) Mechanism of actin filament turn‑ over by severing and nucleation at different concentrations of ADF/co‑ filin. Mol Cell 24: 13–23.
  • Bamburg JR, Wiggan OP (2002) ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12: 598–605.
  • Bateman RJ, Chengjie X, Benzinger TLS, Fagan AM, Alison G, Fox NC, Marcus DS, Cairns NJ, Xianyun X, Blazey TM (2012) Clinical and biomark‑ er changes in dominantly inherited Alzheimer’s disease. N Eng J Med 367: 795–804.
  • Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39: 1071–1076.
  • Bernstein BW, Bamburg, JR (2010) ADF/cofilin: a functional node in cell bi‑ ology. Trends Cell Biol 20: 187–195.
  • Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107: 79–100.
  • Boros BD, Greathouse KM, Gentry EG, Curtis KA, Birchall EL, Gearing M, Herskowitz JH (2017) Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol 82: 602–614.
  • Bravo‑Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J (2013) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14: 405–415.
  • Bravo‑Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J (2011) A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 21: 635–644.
  • Bringas ME, Carvajal‑Flores FN, Lopez‑Ramirez TA, Atzori M, Flores G (2013) Rearrangement of the dendritic morphology in limbic regions and al‑ tered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience 241: 170–187.
  • Chacon PJ, Garcia‑Mejias R, Rodriguez‑Tebar A (2011) Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hip‑ pocampal neurons against amyloid beta toxicity. Mol Neurodegener 6: 14.
  • Chiroma SM, Baharuldin MTH, Taib M, Norma C, Amom Z, Jagadeesan S, Ilham Adenan  M, Mahdi O, Moklas MAM (2019) Centella asiatica Pro‑ tects d‑Galactose/AlCl3 Mediated Alzheimer’s Disease‑Like Rats via PP2A/GSK‑3β Signaling Pathway in Their Hippocampus. Inte J Mol Sci 20: 1871.
  • Crowe SE, Ellis‑Davies GC (2014) Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons. Brain Struct Funct 219: 571–580.
  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Annals Neurol 27: 457–464.
  • DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neuro‑ degeneration 5: 417–421.
  • de Lanerolle P, Serebryannyy L (2011) Nuclear actin and myosins: life with‑ out filaments. Nature Cell Biol 13: 1282–1288.
  • Dickstein DL, Brautigam H, Stockton SD Jr, Schmeidler J, Hof PR (2010) Changes in dendritic complexity and spine morphology in transgenic mice expressing human wild‑type tau. Brain Struct Funct 214: 161–179.
  • Dillon C, Goda Y (2005) The actin cytoskeleton: Integrating form and func‑ tion at the synapse. Ann Review Neurosci 28: 25–55.
  • Dong HK, Yeo SH, Park JM, Ji YC, Lee TH, Park SY, Ock MS, Eo J, Kim HS, Cha HJ (2014) Genetic markers for diagnosis and pathogenesis of Alzhei‑ mer’s disease. Gene 545: 185–193.
  • Doody RS, Rema R, Martin F, Takeshi I, Bruno V, Steven J, Karl K, Feng H, Xiaoying S, Thomas RG (2013) A phase 3 trial of semagacestat for treat‑ ment of Alzheimer’s disease. N Eng J Med 369: 341.
  • Dopie J, Skarp KP, Rajakylä EK, Tanhuanpää K, Vartiainen MK (2012) Active maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci 109: E544–552.
  • Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental mod‑ els and reality. Acta Neuropathol 133: 155–175.
  • Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH, Ladu MJ, Weeber EJ, Turner RS, Xu B, Rebeck GW, Hoe HS (2009) ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neu‑ rosci 29: 15317–15322.
  • Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, Sur C, Mukai Y, Voss T, Furtek C (2018) Randomized trial of verubecestat for mild‑to‑moderate Alzheimer’s disease. N Engl J Med 378: 1691–1703.
  • Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak‑Vance MA, Risch N, van Duijn CM (1997) Effects of age sex and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta‑analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278: 1349–1356.
  • Fernando GI, Frances P, Yong J, Henrieta S, Jing Y, Yanjie S, Feng‑Xia  L, Regina K, Richard K, Pankaj M (2010) Immunomodulation targeting ab‑ normal protein conformation reduces pathology in a mouse model of Alzheimer’s disease. Plos One 5 e13391.
  • Flores G, Alquicer G, Silva‑Gomez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK (2005) Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post‑pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 133: 463–470.
  • Forner S, Baglietto‑Vargas D, Martini AC, Trujillo‑Estrada  L, LaFerla FM (2017) Synaptic impairment in Alzheimer’s disease: A dysregulated sym‑ phony. Trends Neurosci 40: 347–357.
  • Foster Olive  M, Del Franco AP, Gipson CD (2018) Diolistic labeling and analysis of dendritic spines. Methods Mol Biol 1727: 179–200.
  • Frost NA, Hari S, Huihui K, Eric B, Blanpied TA (2010) Single‑molecule dis‑ crimination of discrete perisynaptic and distributed sites of actin fila‑ ment assembly within dendritic spines. Neuron 67: 86–99.
  • Gema H, María Antonia B, Pilar GR, Asunción M, Agustina G, Juan H, Silvia F, Gabriel S, Isidre F, Elena, G (2009) Altered distribution of RhoA in Alzhei‑ mer’s disease and AbetaPP overexpressing mice. J Alzheimers Dis 19: 37–56.
  • Gordon BA, Blazey TM, Su Y, Hari‑Raj A, Dincer A, Flores S, Christensen J, Mcdade E, Wang G, Xiong C (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dom‑ inant Alzheimer’s disease: a  longitudinal study. Lancet Neurol 17: 241–250.
  • Götz J, Bodea LG, Goedert M (2018) Rodent models for Alzheimer disease. Nat Rev Neurosci 19: 583–598.
  • Grontvedt, GR, Schroder, TN, Sando, SB, White, L, Brathen, G, Doeller, CF (2018) Alzheimer’s disease. Curr Biol 28: R645‑R649.
  • Guerreiro R, Hardy J (2014) Genetics of Alzheimer’s Disease. Neurothera‑ peutics 11: 732–737. Acta Neurobiol Exp 2020, 80: 225–244 241
  • Han et al. Hagen S, Boyd CS, Ruhi A, Spencer JPE, Duncan RF, Catherine RE, Enrique C (2003) c‑Jun N‑terminal kinase (JNK)‑mediated modulation of brain mi‑ tochondria function: new target proteins for JNK signalling in mitochon‑ drion‑dependent apoptosis. Biochem J 372: 359–369.
  • Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP (2017) Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer’s disease concurrent with co‑ filin1/phosphorylated‑cofilin1 and RAC1/CDC42 alterations in rats. PLoS One 12: e0185102.
  • Heiko B, Thal DR, Estifanos G, Kelly DT (2011) Stages of the pathologic pro‑ cess in Alzheimer disease: age categories from 1 to 100 years. J Neuro‑ pathol Exp Neurol 70: 960.
  • Henderson BW, Greathouse KM, Ramdas R, Walker CK, Rao TC, Bach SV, Curtis KA, Day JJ, Mattheyses AL, Herskowitz JH (2019) Pharmacologic inhibition of LIMK1 provides dendritic spine resilience against beta‑am‑ yloid. Sci Signal 12: eaaw9318.
  • Heredia  L, Helguera P, Olmos SD, Kedikian G, Vigo FS, Laferla F, Staufenbiel M, Olmos JD, Busciglio J, Cáceres A (2006) Phosphorylation of actin‑depolymerizing factor/cofilin by LIM‑kinase mediates amyloid β‑induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci 26: 6533–6542.
  • Herskowitz JH, Feng Y, Mattheyses AL, Hales CM, Higginbotham LA, Duong DM, Montine TJ, Troncoso JC, Thambisetty M, Seyfried NT, Levey AI, Lah JJ (2013) Pharmacologic inhibition of ROCK2 suppresses amy‑ loid‑beta production in an Alzheimer’s disease mouse model. J Neurosci 33: 19086–19098.
  • Honkura N, Matsuzaki M, Noguchi J, Ellis‑Davies,GCR, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plas‑ ticity of dendritic spines. Neuron 57: 719–729.
  • Hu XY, Qin S, Lu YP, Ravid R, Swaab DF, Zhou JN (2003) Decreased estrogen receptor‑alpha expression in hippocampal neurons in relation to hyper‑ phosphorylated tau in Alzheimer patients. Acta Neuropathol 106: 213–220.
  • Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E (2012) National Insti‑ tute on Aging–Alzheimer’s Association guidelines for the neuropatho‑ logic assessment of Alzheimer’s disease. Acta Neuropathol 123: 1–11.
  • Ishiguro K, Ando T, Maeda O, Hasegawa  M, Kadomatsu K, Ohmiya N, Niwa Y, Xavier R, Goto H (2006) Paeonol attenuates TNBS‑induced colitis by inhibiting NF‑κB and STAT1 transactivation. Toxicol Appl Pharmacol 217: 35–42.
  • Ittner A, Ittner LM (2018) Dendritic Tau in Alzheimer’s disease. Neuron 99: 13–27.
  • Ittner LM, Gotz J (2011) Amyloid‑beta and tau – a toxic pas de deux in Alz‑ heimer’s disease. Nat Rev Neurosci 12: 65–72.
  • Jack CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung MM, Gunter JL, Boeve BF, Kemp BJ (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implica‑ tions for sequence of pathological events in Alzheimer’s disease. Brain 132: 1355–1365.
  • Juan YC, Tsai WJ, Lin YL, Wang GJ, Cheng JJ, Yang HY, Hsu CY, Liu HK (2010) The novel anti‑hyperglycemic effect of Paeoniae radix via the transcrip‑ tional suppression of phosphoenopyruvate carboxykinase (PEPCK). Phytomedicine 17: 626–634.
  • Karch CM, Cruchaga C, Goate AM (2014) Alzheimer’s disease genetics: from the bench to the clinic. Neuron 83: 11–26.
  • Kolb B, Forgie M, Gibb R, Gorny G, Rowntree S (1998) Age, experience and the changing brain. Neurosci Biobehav Rev 22: 143–159.
  • Kubes P, Mehal WZ (2012) Sterile inflammation in the liver. Gastroenterol‑ ogy 143: 1158–1172.
  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Klein WL (2007) A Oligo‑ mer‑induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27: 796–807.
  • Lau CH, Chan CM, Chan YW, Lau KM, Lau TW, Lam FC, Law WT, Che CT, Leung PC, Fung KP (2007) Pharmacological investigations of the anti‑di‑ abetic effect of Cortex Moutan and its active component paeonol. Phy‑ tomedicine 14: 778–784.
  • Lazcano Z, Solis O, Bringas ME, Limon D, Diaz A, Espinosa B, Garcia‑Pelaez I, Flores G, Guevara J (2014) Unilateral injection of Abeta25–35 in the hip‑ pocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse 68: 585–594.
  • Lesne SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, Bennett DA, Ashe KH (2013) Brain amyloid-β oligomers in ageing and Alzheimers dis‑ ease. Brain 136: 1383–1398.
  • Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Ann Rev Psychol 61: 111–140.
  • Li C, Yang L, Wu H, Dai M (2018a) Paeonol inhibits oxidized low‑density li‑ poprotein‑induced vascular endothelial cells autophagy by upregulating the expression of miRNA‑30a. Front Pharmacol 9: 95.
  • Li X, Huang X, Tang Y, Zhao F, Cao Y, Yin L, Li G (2018b) Assessing the Phar‑ macological and therapeutic efficacy of traditional chinese medicine Liangxue Tongyu prescription for intracerebral hemorrhagic stroke in neurological disease models. Front Pharmacol 9: 1169.
  • Lin B (2011) Polyphenols and neuroprotection against ischemia and neuro‑ degeneration. Mini Rev Med Chem 11: 1222 ‑1238.
  • Liu MH, Lin AH, Ko HK, Perng DW, Lee TS, Kou YR (2017) Prevention of bleomycin‑induced pulmonary inflammation and fibrosis in mice by paeonol. Front Physiol 8: 193.
  • Liu Y, Li C, Wu H, Xie X, Sun Y, Dai M (2018) Paeonol Attenuated inflam‑ matory response of endothelial cells via stimulating monocytes‑derived exosomal microRNA‑223. Front Pharmacol 9: 1105.
  • Lu S, Han Y, Chu H, Kong L, Zhang A, Yan G, Sun H, Wang P, Wang X (2017) Characterizing serum metabolic alterations of Alzheimer’s disease and intervention of Shengmai‑San by ultra‑performance liquid chromatog‑ raphy/electrospray ionization quadruple time‑of‑flight mass spectrom‑ etry. Food Func 8: 1660–1671.
  • Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J (2011) Neuropsychiatric symptoms in alzheimer’s disease. Alzheimer’s Dementia 7: 532–539.
  • Ma L, Chuang CC, Weng W, Zhao L, Zheng Y, Zhang J, Zuo L (2016) Paeonol Protects rat heart by improving regional blood perfusion during no‑re‑ flow. Front Physiol 7: 298.
  • Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL (2015) Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 59: 208–237.
  • Martinez‑Tellez RI, Hernandez‑Torres E, Gamboa C, Flores G (2009) Prena‑ tal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63: 794–804.
  • Mavroudis IA, Fotiou DF, Manani MG, Njaou SN, Frangou D, Costa VG, Baloyannis SJ (2011) Dendritic pathology and spinal loss in the visual cortex in Alzheimer’s disease: a Golgi study in pathology. Int J Neurosci 121: 347–354.
  • Meng Y, Yu Z, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, Macdonald JF, Wang JY, Falls DL (2002) Abnormal Spine morphology and enhanced LTP in LIMK‑1 knockout mice. Neuron 35: 121–133.
  • Morris R (1984) Developments of a  water‑maze procedure for studying spatial learning in the rat. J Neurosci Meth 11: 47–60.
  • Nishita  M, Wang Y, Tomizawa C, Suzuki A, Niwa R, Uemura T, Mizuno  K (2004) Phosphoinositide 3‑kinase‑mediated activation of cofilin phos‑ phatase Slingshot and its role for insulin‑induced membrane protru‑ sion. J Biol Chem 279: 7193–7198.
  • Okamoto K, Nagai TA, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bi‑ directional plasticity. Nature Neuroscience 7: 1104–1112.
  • Orsucci D, Mancuso M, Ienco EC, Simoncini C, Siciliano G, Bonuccelli U (2013) Vascular factors and mitochondrial dysfunction: a  central role in the pathogenesis of Alzheimer’s disease. Curr Neurovascular Res 10: 76–80.
  • Paxinos G, Watson C (2006) The Rat Brain in Stereotaxic Coordinates. Sixth Edition. 242 Acta Neurobiol Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus‑maze as a  measure of anxiety in the rat. J Neurosci Meth 14: 149–167.
  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and dis‑ assembly of actin filaments. Cell 112: 453–465
  • Prins ND, Visser PJ, Scheltens P (2010) Can novel therapeutics halt the am‑ yloid cascade? Alzheimers Res Ther 2: 5.
  • Qiu C, Kivipelto  M, Aguero‑Torres H, Winblad B, Fratiglioni  L (2004) Risk and protective effects of the APOE gene towards Alzheimer’s disease in the Kungsholmen project: variation by age and sex. J Neurol Neurosurg Psychiatry 75: 828–833.
  • Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez‑Pardo C, Jimenez-Del‑Rio M, Fagan AM, Shah AR, Alvarez S, Arbelaez A (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autoso‑ mal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case‑control study. Lancet Neurol 11: 1048–1056.
  • Risher WC, Ustunkaya T, Singh Alvarado J, Eroglu C (2014) Rapid Golgi anal‑ ysis method for efficient and unbiased classification of dendritic spines. PLoS One 9: e107591.
  • Sadowski MJ, Pankiewicz J, Scholtzova H, Mehta PD, Prelli F, Quartermain D, Wisniewski T (2006) Blocking the apolipoprotein E/amyloid‑beta interac‑ tion as a potential therapeutic approach for Alzheimer’s disease. Proc Nat Acad Sci USA 103: 18787–18792.
  • Sala C, Segal M (2014) Dendritic spines: the locus of structural and func‑ tional plasticity. Physiol Rev 94: 141–188.
  • Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of den‑ dritic architecture. J Cell Science 120: 205–212.
  • Scott RW, Steven H, Diane C, Li A, Ireen K, June M, Elisabeth T, Grant W, Pierre  M, Croft DR (2010) LIM kinases are required for invasive path generation by tumor and tumor‑associated stromal cells. J Cell Biol 191: 169–185.
  • Sebastian V, Estil JB, Chen D, Schrott LM, Serrano PA (2013) Acute physio‑ logical stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus. PloS One 8: e79077.
  • Selkoe DJ (2002) Alzheimer’s disease is a  synaptic failure. Science 298: 789–791.
  • Seripa D, Panza F, Franceschi  M, D’Onofrio G, Solfrizzi  V, Dallapiccola B, Pilotto A (2009) Non‑apolipoprotein E and apolipoprotein E genetics of sporadic Alzheimer’s disease. Ageing Res Rev 8: 214–236.
  • Shankar GM, Bloodgood BL, Matthew T, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid‑beta protein induce reversible synapse loss by modulating an NMDA‑type glutamate recep‑ tor‑dependent signaling pathway. J Neurosci 27: 2866–2875.
  • Solomon A, Mangialasche F, Richard E, Andrieu S, Bennett DA, Breteler M, Fratiglioni  L, Hooshmand B, Khachaturian AS, Schneider LS, Skoog I, Kivipelto  M (2014) Advances in the prevention of Alzheimer’s disease and dementia. J Intern Med 275: 229–250.
  • Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between compo‑ nents of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24: 473–486.
  • Spence EF, Soderling SH (2015) Actin out: regulation of the synaptic cyto‑ skeleton. J Biol Chem 290: 28613–28622.
  • Spires‑Jones TL, Meyer‑Luehmann  M, Osetek JD, Jones PB, Stern EA, Bacskai  BJ, Hyman BT (2007) Impaired spine stability underlies plaque‑related spine loss in an Alzheimer’s disease mouse model. Am J Pathol 171: 1304–1311.
  • Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in den‑ dritic spines and its regulation by activity. Nature Neurosci 5: 239–246.
  • Sun ZZ, Chen ZB, Jiang H, Li LL, Li EG, Xu Y (2009) Alteration of Aβ metab‑ olism‑related molecules in predementia induced by AlCl3 and D‑galac‑ tose. Age 31: 277–284.
  • Sylvain  L, Teng KM, Linda K, Rakez K, Glabe CG, Austin Y, Michela G, Ashe KH (2006) A specific amyloid‑beta protein assembly in the brain impairs memory. Nature 440: 352–357.
  • Tang M, Ryman DC, McDade E, Jasielec MS, Buckles VD, Cairns NJ, Fagan AM, Goate A, Marcus DS, Xiong C, Allegri RF, Chhatwal JP, Danek A, Farlow MR, Fox NC, Ghetti B, Graff‑Radford NR, Laske C, Martins RN, Masters CL, Mayeux RP, Ringman JM, Rossor MN, Salloway  SP, Schofield  PR, Morris JC, Bateman RJ, Dominantly Inherited Alzheimer N (2016) Neu‑ rological manifestations of autosomal dominant familial Alzheimer’s disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN‑OBS). Lancet Neurol 15: 1317–1325.
  • Terry RD, Masliah E, Salmon DP, Butters N, Deteresa R, Hill R, Hansen LA, Katzman R (2010) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals Neurol 30: 572–580.
  • The Lancet Neurology (2017) Solanezumab: Too late in mild Alzheimer’s disease? Lancet Neurol 16: 97.
  • Tsushima H, Emanuele M, Polenghi A, Esposito A, Vassalli M, Barberis A, Difato F, Chieregatti E (2015) HDAC6 and RhoA are novel players in Abe‑ ta‑driven disruption of neuronal polarity. Nat Commun 6: 7781.
  • Tz‑Chong C, Li‑Ping C, Chi‑Yuan L, Chih‑Shung W, Shih‑Ping Y (2003) The an‑ tiinflammatory and analgesic effects of baicalin in carrageenan‑evoked thermal hyperalgesia. Brit J Pharmacol 139: 1146–1152.
  • Van Dam D, De Deyn PP (2011) Animal models in the drug discovery pipe‑ line for Alzheimer’s disease. Br J Pharmacol 164: 1285–1300.
  • Van Troys M, Huyck L, Leyman SS, Vandekerkhove J, Ampe C (2008) Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 87: 649–667.
  • Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, Tuchman M, Gass A, Fiebach JB, Hill D (2016) Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimer’s Res Ther 8: 18.
  • Vepsäläinen S, Koivisto H, Pekkarinen E, Mäkinen P, Dobson G, McDougall GJ, Stewart D, Haapasalo A, Karjalainen RO, Tanila H (2013) Anthocyanin‑enriched bilberry and blackcurrant extracts modulate am‑ yloid precursor protein processing and alleviate behavioral abnormali‑ ties in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 24: 360–370.
  • Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P (2013) Amyloid β deposi‑ tion neurodegeneration and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12: 357–367.
  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assess‑ ing spatial and related forms of learning and memory. Nat Protoc 1: 848–858.
  • Walsh RN, Cummins RA (1976) The open‑field test: a critical review. Psychol Bull 83: 482.
  • Washington PM, Nicholas M, Maia P, Zapple DN, Burns MP (2014) Experi‑ mental traumatic brain injury induces rapid aggregation and oligomer‑ ization of amyloid‑beta in an Alzheimer’s disease mouse model. J Neu‑ rotrauma 31: 125.
  • Wei Y, Liu D, Zheng Y, Li H, Hao C, Ouyang W (2017) Protective effects of kinetin against aluminum chloride and D‑galactose induced cogni‑ tive impairment and oxidative damage in mouse. Brain Res Bull 134 262–272.
  • Wioland H, Guichard B, Senju Y, Myram S, Lappalainen P, Jegou A, Romet‑Lemonne G (2017) ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr Biol 27: 1956–1967.
  • World Health Organization (WHO) Dementia. Key facts/14 May 2019 Avail‑ able at https://www.who.int/news‑room/fact‑sheets/detail/dementia. Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires‑Jones T, Xie H, Arbel‑Ornath M, Grosskreutz CL (2010) Amyloid β induces the morphological neurodegenerative triad of spine loss den‑ dritic simplification and neuritic dystrophies through calcineurin activa‑ tion. J Neurosci 30: 2636–2649.
  • Wu H, Song A, Hu W, Dai M (2017) The anti‑atherosclerotic effect of paeo‑ nol against vascular smooth muscle cell proliferation by up‑regulation of autophagy via the AMPK/mTOR signaling pathway. Front Pharmacol 8: 948.
  • Wyss‑Coray T, Rogers J (2012) Inflammation in Alzheimer disease‑a brief review of the basic science and clinical literature. CSH Perspect Med 2: a006346.
  • Xiao Q, Yu W, Tian Q, Fu X, Wang X, Gu M, Lü Y (2017) Chitinase1 contribut‑ ed to a potential protection via microglia polarization and Aβ oligomer reduction in D‑galactose and aluminum‑induced rat model with cogni‑ tive impairments. Neuroscience 355: 61–70.
  • Xu F, Xiao H, Liu R, Yang Y, Zhang M, Chen L, Chen Z, Liu P, Huang H (2019) Paeonol ameliorates glucose and lipid metabolism in experimental dia‑ betes by activating akt. Front Pharmacol 10: 261.
  • Ya‑Ping  L, Mei Z, Xiang‑You H, Hao X, Swaab DF, Rivka R, Jiang‑Ning Z (2003) Estrogen receptor alpha‑immunoreactive astrocytes are in‑ creased in the hippocampus in Alzheimer’s disease. Exp Neurol 183: 482–488.
  • Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773: 642–652.
  • Yang J, Ji Y, Mehta P, Bates KA, Sun Y, Wisniewski T (2011) Blocking the apolipoprotein E/amyloid‑β interaction reduces fibrillar vascular amy‑ loid deposition and cerebral microhemorrhages in TgSwDI mice. J Alz‑ heimers Dis 24: 269.
  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM‑kinase 1 and its role in Rac‑mediated actin reorganization. Nature 393: 809–812.
  • Yasunori H, Majewska AK (2005) Dendritic spine geometry: functional im‑ plication and regulation. Neuron 46: 529–532.
  • Yuesong G, Lei C, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease‑affected brain: presence of oligo‑ meric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. P Natl Acad Sci USA 100: 10417–10422.
  • Zhang L, Chen Z, Gong W, Zou Y, Xu F, Chen L, Huang H (2018) Paeonol ameliorates diabetic renal fibrosis through promoting the activation of the Nrf2/ARE pathway via up‑regulating Sirt1. Front Pharmacol 9: 512.
  • Zhang L, Li DC, Liu LF (2019) Paeonol: pharmacological effects and mecha‑ nisms of action. Int Immunopharmacol 72: 413–421.
  • Zhang W, Benson D (2001) Stages of synapse development defined by de‑ pendence on F‑actin. J Neurosci 21: 5169–5181.
  • Zhu XL, Chen JJ, Han F, Pan C, Zhuang TT, Cai YF, Lu YP (2018) Novel antide‑ pressant effects of paeonol alleviate neuronal injury with concomitant alterations in BDNF Rac1 and RhoA levels in chronic unpredictable mild stress rats. Psychopharmacology 235: 2177–2191.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ce33608e-c6ac-4a2c-9981-031a9f671353
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.