Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | Special Issue S3 |
Tytuł artykułu

Modeling and analysis of 12-pulse inverter in shipboard or aircraft

Warianty tytułu
Języki publikacji
With the development of DC distribution system within the isolated power system of a ship or an aircraft, more constant frequency loads will be supplied by inverters connected to DC main bus. In the operating mode conversion process of an isolated power system, inverters will inevitably suffer from serious disturbance and affect the stability of the system. Therefore, it is important to establish a model of the inverter that reflects its dynamic characteristics and based on which to conduct the stability analysis. This paper proposes a 12-pulse inverter model based on the generalized state space averaging (GSSA) method. This model can overcome the limitations of 12-pulse inverter state space averaging (SSA) model in transient analysis with good accuracy and fast analysis ability effectively. Three kinds of models for a 12-pulse aircraft inverter are built in MATLAB, namely GSSA model, SSA model and detail device model. The simulation results show the high accuracy of GSSA model in stability analysis. This study provides an effective analytical tool for stability analysis of 12-pulse inverter and also provides a reference for inverter modeling research of isolated power system such as in aircraft or ship
Słowa kluczowe
Opis fizyczny
  • Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
  • Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
  • 1. L. J. Chen, S. W. Mei, X. U. Yin, et al, 2011. A new pattern of future power grids:Isolated power system. Journal of Electric Power Science & Technology.
  • 2. Y. Khersonsky, N. Hingorani, K. L. PetersSon, 2009. IEEE Electric Ship Technologies Initiative. IEEE Industry Applications Magazine, 17(1), 65-73.
  • 3. M. Hirst, A. Mcloughlin, P. J. Norman, et al, 2011. Demonstrating the more electric engine: a step towards the power optimised aircraft. Iet Electric Power Applications, 5(1), 3-13.
  • 4. L. T. Lam, R. Louey, 2006. Development of ultra-battery for hybrid-electric vehicle applications. Journal of Power Sources, 158(2), 1140-1148.
  • 5. L. Prisse, D. Ferer, H. Foch, et al, 2009. New power centre and power electronics sharing in aircraft. European Conference on Power Electronics and Applications. IEEE .pp. 1-9.
  • 6. K. P. Logan,2007. Intelligent diagnostic requirements of future all-electric ship integrated power system. IEEE Transactions on Industry Applications, 43(1), 139-149.
  • 7. K. Satpathi, A. Ukil, N.Thukral, et al, 2016. Modelling of DC Shipboard Power System. IEEE International Conference on Power Electronics, drives and Energy Systems. IEEE.
  • 8. Y. Wang, C. Xiang, S. Hu,2014. Design and control strategy for a new hybrid energy storage system. Applied Power Electronics Conference and Exposition. IEEE. 3401-3405.
  • 9. D. Izquierdo, R. Azcona, F. J. L. Del Cerro, et al, 2010. Electrical power distribution system (HV270DC) for application in more electric aircraft. Applied Power Electronics Conference and Exposition (APEC). Palm Springs: IEEE. 1300-1305.
  • 10. C. R. Avery, S. G. Burrow, P. H. Mellor, 2007. Electrical generation and distribution for the more electric aircraft. Universities Power Engineering Conference(UPEC) 2007. Brighton: IEEE. 1007-1012.
  • 11. H. Zhang, F. Mollet, C. Saudemont, et al,2010. Experimental validation of energy storage system management strategies for a local dc distribution system of more electric aircraft. Industrial Electronics, 57(12), 3905-3916.
  • 12. T. Wu, S. V. Bozhko, G. M. Asher, 2010. High speed modeling approach of aircraft Electronical power systems under both normal and abnormal scenarios. International Symposium Industrial Electronics (ISIE). Bari: IEEE. 870-877.13. 15 Real-Time Distributed Coordination of Power Electronic Converters in a DC Shipboard Distribution System
  • 14. S. R. Mathew, P. V. R. Sai Kiran,M. Anand, 2014. Design and implementation of a three level diode clamped inverter for more electric aircraft applications using hardware in the loop simulator. 2014International conference on Advances in Electronics, Computers and Computers Communications(ICAECC). Bangalore: IEEE. 1-6.
  • 15. S. Ahmed, Z. Shen, P. Mattavelli, et al, 2011. Small-signal model of a Voltage Source Inverter (VSI) Considering the Dead-Time Effect and Space Vector Modulation Types. The 26th annual Applied Power Electronics Conference and Exposition. Fort worth: IEEE. 685-690.
  • 16. D. Y. Hyun, C. S. Lim, R. Y. Kim, et al,2013. Averaged modeling and control of a single-phase grid-connected twostage inverter for battery application. Industrial Electronic Society. Vienna: IEEE. 489-494.
  • 17. T. Wu, S. Bozhko, G. M. Asher, et al,2008. Fast reduced functional models of electromechanical actuators for moreelectric aircraft power system study. Bellevue WA: SAE Technical Paper.
  • 18. T.Wu, S. V. Bozhko, G. Asher, et al,2009. A Fast Dynamic Phasor Model of Autotransformer Rectifier Unit for More Electric Aircraft. Industrial Electronics 35th Annual Conference of IEEE. Porto: IEEE. 2531-2536.
  • 19. S. R. Sanders, J. M. Noworolski, X. Z. Liu, et al,1991. Generalized averaging method for power conversion circuits.Power Electronics IEEE Transactions on, 6(2), 251-259.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.