PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 26 | 4 |

Tytuł artykułu

Nitrification onto a rotating electro-biological contactor

Warianty tytułu

PL
Nitryfikacja na elektrobiologicznym złożu tarczowym

Języki publikacji

EN

Abstrakty

EN
The goal of the conducted experiment was to determine the electric current impact on the efficiency of nitrogen compounds oxidation at COD to total Kjeldahl’s nitrogen ratio of 20, 10, 5. The experiments were run in bench scale, in a rotating electro-biological contactor (REBC) under both, conventional conditions (i.e. without electric current) and with electric current passage at the following densities: 0.2 A m⁻², 0.8 A m⁻², and 1.5 A m⁻². The cathode comprised stainless steel discs with immobile biofilm, and the anode a stainless steel electrode, submerged in waste water contained in the flow-tank of the contactor. The process of nitrogen oxidation was the most effective with electric current passage at the density of 1.5 A m⁻² regardless of applied COD/NTK ratio.
PL
Celem doświadczenia było określenie wpływu przepływu prądu elektrycznego na sprawność utleniania związków azotu gdy stosunek ChZT do azotu ogólnego Kjeldahla wynosił 20, 10 i 5. Badania prowadzono w skali laboratoryjnej na elektrobiologicznym złożu tarczowym (REBC) gdy nie przepływał prąd elektryczny, oraz gdy przepływał prąd elektryczny o gęstości: 0,2 A m⁻², 0,8 A m⁻², 1,5 A m⁻². Katodą były tarcze ze stali nierdzewnej z unieruchomioną błoną biologiczną, anodą – elektroda ze stali nierdzewnej, zanurzona w ściekach komory przepływowej złoża. Najefektywniej proces utleniania azotu przebiegał gdy przepływał prąd elektryczny o gęstości 1,5 A m⁻², niezależnie od stosunku ChZT:NTK.

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.311-321,fig.,ref.

Twórcy

  • Department of Environmental Protection Engineering, University of Warmia and Mazury in Olsztyn, Romana Prawochenskiego 1, 10-957 Olsztyn, Poland

Bibliografia

  • BERISTAIN-CARDOSO R., TEXIER A.C., RAZO-FLORES E., MÉNDEZ-PAMPÍN R. 2009. Biotransformation of aromatic compounds from wastewater containing N and/or S, by nitrification/denitrification: a review, Rev. Environ. Sci. Biotechnol., 8: 325–342.
  • BESCHKOV V., VELIZAROV S., AGATHOS S.N., LUKOVA V. 2004. Bacterial denitrification of waste water stimulated by constant electric field, Biochem. Eng. J., 17: 141–145.
  • BRINKE-SEIFERTH S., BEHRENDT J., SEKOULOV I. 1999.The biofilm filter sequencing batch reactor (BFSBR), Wat. Sci. Tech., 40(4–5): 77–83.
  • CAMPOS J.L., GARRIDO J.M., MOSQUERA-CORRAL A., ME´ NDEZ R. 2007. Stability of a nitrifying activated sludge reactor, Biochem. Eng. J., 35: 87–92.
  • CORTEZ S., TEIXIERA P., OLIVIERA R., MOTA M. 2008. Rotating biological contactors: a review on main factors affecting performance, Rev. Environ. Sci. Biotechnol., 7: 155–172.
  • GIESEKE A., PURKHOLD U., WAGNER M., AMANN R., SCHRAMM A. 2001. Community structure and activity of nitrifying bacteria in a phosphate-removing biofilm, Applied and Environmental Microbiology, 67(3): 1351–1362.
  • GREEN M., RUSKOL Y., LAHAV O., TARRE S. 2001. Chalk as the carrier for nitrifying biofilm in a fluidised bed reactor, Wat. Res., 35(1): 284–290.
  • HEM L.J., RUSTEN B., ØDEGAARD H. 1994. Nitrification in a moving-bed biofilms reactor, Wat. Res., 28(6): 1425–1433.
  • ITOKAWA H., HANAKI K., MATSUO T. (2001). Nitrous oxide production In high-loading biological nitrogen removal process under low COD/N ratio condition, Wat. Res., 35(3): 657–664.
  • KARNCHANAWONG S., POLPRASER C. 1990. Organic carbon and nitrogen removal in attached-growth circulating reactor (AGCR), Wat. Res., 22(3–4): 179–186.
  • KRZEMIENIEWSKI M., RODZIEWICZ J. 2005. Nitrogen compounds removal in a rotating electrobiological contactor, Environmental Engineering Science, 22(6): 816–822.
  • LI T.W., PENG Y. Z., WANG Y.Y., ZHU G.B., CHI W.Q., GU G.W. 2003. Experimental study on sequencing batch biofilm reactor with biological filtration (SBBR-BF) for wastewater treatment, Wat. Sci. Tech., 48(11–12): 299–307.
  • LINDEMANN J., WIESMANN U. 2000. Single-disc investigations on nitrogen removal of higher loads in sequencing batch and continuously operated RDR systems, Wat. Sci. Tech., 41(4–5): 77–84.
  • GIESEKE R., MELO L.F., PURKHOLD U., WUERTZ S., WAGNER M. 2002. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon, Wat. Res., 36(2): 469–481.
  • ØDEGAARD H. 2000. Advanced compact wastewater treatment based on coagulation and moving bed biofilm processes, Wat. Sci. Tech., 42(12): 33–48.
  • ØDEGAARD H., RUSTEN B., SILJUDALEN J. 1999. The development of the moving bed biofilm process – from idea to commercial product, European Water Management, 2(3): 36–43.
  • OHASI A., VIRAJ DE SILVA D.G., MOMBARRY B., MANEM J.A., STAHL D.A., RITTMAN B.E. 1995. Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs, Wat. Sci. Tech., 32(8): 75–84.
  • OKABE S., OOZAWA Y., HIRATA K., WATANABE Y. 1996. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios, Wat. Res., 30(7): 1563–1572.
  • PASTORELLI G., ANDREOTTOLA G., CANZIANI R., DARRIULAT C., DE FRAJA FRANGIPANE E., ROZZI A. 1997a. Organic carbon and nitrogen removal in moving-bed biofilm reactors, Wat. Sci. Tech., 35(6): 91–99.
  • PASTORELLI G., ANDREOTTOLA G., CANZIANI R., DE FRAJA FRANGIPANE E., DE PASCALIS F., ROZZI A. 1997b. Pilot-plant experiments with moving-bed biofilm reactors, Wat. Sci. Tech., 36(1): 43–50.
  • PATUREAU D., BERNET N., MOLETTA R. 1997. Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Comamonas sp. Strain SGLY2. Wat. Res. 31(6): 1363–1370.
  • RODZIEWICZ J., FILIPKOWSKA U., DZIADKIEWICZ E. 2011. Electrolytically aided denitrification on a rotating biological contactor, Environmental Technology, 32(1): 93–102.
  • RUSTEN B., SILJUDALEN J.G., NORDEIDET B. 1994. Upgarding to nitrogen removal with KMT moving bed biofilm process, Wat. Sci. Tech., 29(12): 185–195.
  • SATOH H., OKABE S., NORIMATSU N., WATANABE Y. (2000). Significance of substrate C/N ratio on structure and activity of nitrifying biofilms determined by in-situ hybridisation and the use of microelectrodes, Wat. Sci. Tech., 41(4–5): 317–321.
  • TIJHUIS L., HUISMAN J.L., HEKKELMAN H.D., VAN LOOSDRECHT M.C.M., HEIJNEN J.J. 1995. Formation of nitrifying biofilms on small suspended particles in airlift reactors, Biotechnol. Bioeng., 44(5): 585.
  • WATANABE T., HASHIMOTO S., KURODA M. 2002. Simultaneous nitrification and denitrification in a single reactor using bio-electrochemical process, Wat. Sci. Tech., 46(4–5): 163–169.
  • WILDERER P.A. 1995. Technology of membrane biofilm reactors operated under periodically changing process conditions, Wat. Sci. Tech., 31(1): 173–183.
  • Woda i ścieki. Badania specjalne osadów. Hodowla standardowego osadu czynnego w warunkach laboratoryjnych. PN-87/C-04616/10.
  • WOOLARD C.R. 1997.The advantages of periodically operated biofilm reactors for the treatment of highly variable wastewater, Wat. Sci. Tech., 33(1): 199–206.
  • VAN LOOSDRECHT M.C.M., TIJHUIS L., WIJDIEKS A.M.S., HEIJNEN J.J. 1995. Population distribution in aerobic biofilms on small suspended particles, Wat. Sci. Tech., 31(1): 163–171.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cdefff99-c43a-4c00-be93-3247540fe522
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.