PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 2 |

Tytuł artykułu

Osteohistology of the Early Triassic ichthyopterygian reptile Utatsusaurus hataii: Implications for early ichthyosaur biology

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ichthyosaurs were highly adapted to a marine lifestyle, as shown by their fish-like body shape and their assumed active swimming abilities and high metabolic rates. However, the processes of adaptation to an aquatic life in the early stages of this lineage remain poorly understood. Here, we present the first osteohistological data concerning the most basal ichthyopterygian yet known, Utatsusaurus hataii, from the Lower Triassic of Japan. The cancellous bone structure suggests adaptation to active swimming in an open marine environment. Moreover, the possible occurrence of rapidly deposited bone tissue, in a fibrolamellar complex, suggests a higher metabolic rate than in modern poikilothermic reptiles, and therefore a trend toward homeothermy. This basal ichthyosaur, with its elongate body, was already more adapted to an aquatic lifestyle than expected from its morphology, and the process of adaptation to a marine lifestyle was already well advanced by the Early Triassic.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

59

Numer

2

Opis fizyczny

p.343-352,fig.,ref.

Twórcy

autor
  • The University Museum, The University of Tokyo, 113-0033, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
autor
  • Steinmann Institute of Geology, Mineralogy and Palaeontology, University of Bonn, Nusallee 8, D-53115 Bonn, German
autor
  • The University Museum, The University of Tokyo, 113-0033, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Bibliografia

  • Amprino, R. 1947. La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroissement. Archives de Biologie 58: 315–330.
  • Bennett, S.P., Barrett, P.M., Collinson, M.E., Moore-Fay, S., Davis, P.G., Palmer, C. 2012. A new specimen of Ichthyosaurus communis from Dorset, UK, and its bearing on the stratigraphical range of the species. Proceedings of Geologists’ Association 123: 146–154.
  • Bernard, A., Lécuyer, C., Vincent, P., Amiot, R., Bardet, N., Buffetaut, E., Cuny, G., Fourel, F., Martineau, F., Mazin, J.-M., and Prieur, A. 2010. Regulation of body temperature by some Mesozoic marine reptiles. Science 328: 1379–1382.
  • Buffrénil, V. de and Mazin, J.-M. 1990. Bone histology of the ichthyosaurs: comparative data and functional interpretation. Paleobiology 16: 435–447.
  • Buffrénil, V. de and Schoevaert, D. 1988. On how the periosteal bone of the delphinid humerus becomes cancellous: Ontogeny of a histological specialization. Journal of Morphology 198: 149–164.
  • Buffrénil, V. de, Canoville, A., D’Anastasio, R., and Domning, D.P. 2010. Evolution of sirenian pachyostosis, a model-case for the study of bone structure in aquatic tetrapods. Journal of Mammalian Evolution 17: 101–120.
  • Buffrénil, V. de, Mazin, J.-M., and Ricqlès, A. de 1987 Caractères structuraux et mode de croissance du femur d’Omphalosaurus nisseri, ichthyosaurien du Trias moyen de Spitsberg. Annales de Paléontologie 73: 195–216.
  • Canoville, A. and Laurin, M. 2010. Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biological Journal of the Linnean Society 100: 384–406.
  • Castanet, J., Newman, D.G., and Saint Girons, H. 1988. Skeletochronological data on the growth, age, and population structure of the tuatara, Sphenodon punctatus, on Stephens and Lady Alice Islands, New Zealand. Herpetologica 44: 25–37.
  • Chinsamy, A., Codorniú, L., and Chiappe, L. 2009. Paleobiological implications of the bone histology of Pterodaustro guinazui. Anatomical Record 292: 1462–1477.
  • Enlow, D.H. and Brown, S.O. 1956. A comparative histological study of fossil and recent bone tissues. Part 1. Texas Journal of Science 8: 405–443.
  • Enlow, D.H. and Brown, S.O. 1957. A comparative histological study of fossil and recent bone tissues. Part 2. Texas Journal of Science 9: 186–214.
  • Enlow, D.H. and Brown, S.O. 1958. A comparative histological study of fossil and recent bone tissues. Part 3. Texas Journal of Science 10: 187–230.
  • Felts, W. and Spurrel, F. 1966. Some structural and developmental characteristics of cetacean (odontocete) radii. A study of adaptive osteogenesis. American Journal of Anatomy 118: 103–134.
  • Fernández, M.S. 2003. Ophthalmosauria (Ichthyosauria) forefin from the Aalenian–Bajocian boundary of Mendoza Province, Argentina. Journal of Vertebrate Paleontology 23: 691–694.
  • Francillon-Vieillot, H., Buffrénil, V. de, Castanet, J., Géraudie, J., Meunier, F. J., Sire, J.-Y., Zylberberg, L., and Ricqlès, A. de 1990. Microstructure and mineralization of vertebrate skeletal tissues. In: J.G. Carter (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume I, 471–530. Van Nostrand Reinhold, New York.
  • Gross, W. 1934. Die Typen des mikroskopischen Knochenbaues bei fossilen Stegocephalen und Reptilien. Zeitschrift für Anatomie und Entwicklungsgeschichte 203: 731–764.
  • Houssaye, A. 2009. “Pachyostosis” in aquatic amniotes: a review. Integrative Zoology 4: 325–340.
  • Houssaye, A. and Bardet, N. 2012. Rib and vertebral micro-anatomical characteristics of hydropelvic mosasauroids. Lethaia 45: 200–209.
  • Houssaye, A., Lindgren, J., Pellegrini, R., Lee, A.H., Germain, D., and Polcyn, M.J. 2013. Microanatomical and histological features in the long bones of mosasaurine mosasaurs (Reptilia, Squamata)—implications for aquatic adaptation and growth rates. Plos One 8: e76741.
  • Houssaye, A., Scheyer, T.M., Kolb, C., Fischer, V., and Sander, P.M. 2014. A new look at ichthyosaur long bone microanatomy and histology: Implications for their adaptation to an aquatic life. Plos One 9: e95637.
  • Kashiyama, K. and Oji, T. 2004. Low-diversity shallow marine benthic fauna from the Smithian of northeast Japan: paleoecologic and paleobiogeographic implications. Paleontological Research 8: 199–218.
  • Kawakami, G. and Kawamura, M. 2002. Sediment flow and deformation (SFD) layers: evidence for intrastratal flow in laminated muddy sediments of the Triassic Osawa Formation, northeast Japan. Journal of Sedimentary Research 72: 171–181.
  • Kiprijanov, W. 1881. Studien über die Fossilen Reptilien Russlands. Theil 1 Gattung Ichthyosaurus König aus dem severischen Sandstein oder Osteolith der Kreide-Gruppe. Mémoires de l’Académie impériale des Sciences de St.-Pétersbourg, VIIe Série 28: 1–103.
  • Kolb, C., Sánchez-Villagra, M.R., and Scheyer, T.M. 2011. The palaeohistology of the basal ichthyosaur Mixosaurus Baur, 1887 (Ichthyopterygia, Mixosauridae) from the Middle Triassic: Palaeobiological implications. Comptes Rendus Palevol 10: 403–411.
  • Lingham-Soliar, T. and Reif, W.-E. 1998. Taphonomic evidence for fast tuna-like swimming in Jurassic and Cretaceous ichthyosaurs. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 207: 171–183.
  • Lopuchowycz, V.B. and Massare, J.A. 2002. Bone microstructure of a Cretaceous ichthyosaur. Paludicola 3: 139–147
  • Maisch, M.W. 2010. Phylogeny, systematics, and origin of the Ichthyosauria—the state of the art. Palaeodiversity 3: 151–214.
  • Margerie, E. de, Cubo, J., and Castanet, J. 2002. Bone typology and growth rate: testing and quantifying “Amprino’s rule” in the mallard (Anas platyrhynchos). Comptes Rendus Biologies 325: 221–230.
  • Margerie, E. de, Robin, J.-P., Varrier, D., Cubo, J. Groscolas, R., and Castanet, J. 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). Journal of Experimental Biology 207: 869–879.
  • McGowan, C. and Motani, R. 2003. Handbook of Paleoherpetology. Part 8. Ichthyopterygia. {pages?}. Verlag Dr. Friedrich Pfeil, München.
  • Montes, L., Castanet, J., and Cubo, J. 2010. Relationships between bone growth rate and bone tissue organization in amniotes: first test of Amprino’s rule in a phylogenetic context. Animal Biology 60: 25–41.
  • Motani, R. 1997. New information on the forefin of Utatsusaurus hataii (Ichthyosauria). Journal of Paleontology 71: 475–479.
  • Motani, R. 1999. Phylogeny of the Ichthyopterygia. Journal of Vertebrate Paleontology 19: 473–496.
  • Motani, R. 2000. Is Omphalosaurus ichthyopterygian?—a phylogenetic perspective. Journal of Vertebrate Paleontology 20: 295–301.
  • Motani, R. 2002. Scaling effects in caudal fin propulsion and the speed of ichthyosaurs. Nature 415: 309–312.
  • Motani, R. 2005. Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints. Annual Review of Earth and Planetary Sciences 33: 395–420.
  • Motani, R. 2010. Warm-blooded “sea dragons”? Science 328: 1362–1362.
  • Motani, R., Minoura, N., and Ando, T. 1998. Ichthyosaurian relationships illuminated by new primitive skeletons from Japan. Nature 393: 255–256.
  • Motani, R., You, H., and McGowan, C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature 382: 347–348.
  • Padian, K., Horner, J.R., and Ricqlès, A. de 2004. Growth in small dinosaurs and pterosaurs: The evolution of archosaurian growth strategies. Journal of Vertebrate Paleontology 24: 555–571.
  • Padian, K., Ricqlès, A. de, and Horner, J.R. 2001. Dinosaurian growth rates and bird origins. Nature 412: 405–408.
  • Ray, S., Botha, J., and Chinsamy, A. 2004. Bone histology and growth pattern of some nonmammalian therapsids. Journal of Vertebrate Paleontology 24: 634–648.
  • Rhodin, A.G.J. 1985. Comparative chondro-osseous development and growth of marine turtles. Copeia 1985: 752–771.
  • Ricqlès, A. de 1976. On bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance. In: A. d’A. Bellairs and C.B. Cox (eds.), Morphology and Biology of Reptiles, Volume 3, 123–149. Linnean Society Symposium Series, London.
  • Ricqlès, A. de and Buffrénil, V. de 2001. Bone histology, heterochronies and the return of tetrapods to life in water: where are we? In: J.-M. Mazin and V. de Buffrénil (eds.), Secondary Adaptation of Tetrapods to Life in Water, 289–310. Verlag Dr. Friedrich Pfeil, Munich.
  • Sander, P.M. 2000. Ichthyosauria: their diversity, distribution, and phylogeny. Paläontologische Zeitschrift 74: 1–35.
  • Sander, P.M. and Faber, C. 1998 New finds of Omphalosaurus and a review of Triassic ichthyosaur paleobiogeography. Paläontologische Zeitschrift 72: 149–162.
  • Sander, P.M. and Faber, C. 2003 The Triassic marine reptile Omphalosaurus: Osteology, jaw anatomy, and evidence for ichthyosaurian affinities. Journal of Vertebrate Paleontology 23: 799–816.
  • Scheyer, T.M., Klein, N., and Sander, P.M. 2010. Developmental palaeontology of Reptilia as revealed by histological studies. Seminars in Cell and Developmental Biology 21: 462–470.
  • Seitz, A.L.L. 1907. Vergleichende Studien über den mikroskopischen Knochenbau fossiler und rezenter Reptilien, und dessen Bedeutung für das Wachstum und Umbildung des Knochengewebes im Allgemeinen. Nova Acta, Abhandlungen der Kaiserlich Leopoldinisch-Carolinisch Deutschen Akademie der Naturforscher 87: 230–370.
  • Sheldon, A. 1997. Ecological implications of mosasaur bone microstructure. In: J.M. Callaway and E.L. Nicholls (eds.), Ancient Marine Reptiles, Volume 11, 293–332. Academic Press, San Diego.
  • Shikama, T., Kamei, T., and Murata, M. 1978. Early Triassic Ichthyosaurus, Utatsusaurus hataii, gen. et sp. nov., from the Kitakami Massif, Northeast Japan. The Science Reports of the Tohoku University, Second Series, Geology 48: 77–97.
  • Talevi, M. and Fernández, M.S. 2012. Unexpected skeletal histology of an ichthyosaur from the Middle Jurassic of Patagonia: implications for evolution of bone microstructure among secondary aquatic tetrapods. Naturwissenschaften 99: 241–244.
  • Talevi, M., Fernández, M., and Salgado, L. 2012. Variación ontogenética en la histología ósea de Caypullisaurus bonapartei Fernández, 1997 (Ichthyosauria: Ophthalmosauridae). Ameghiniana 49: 38–46.
  • Wiffen, J., Buffrénil, V. de, Ricqlès, A. de, and Mazin, J.-M. 1995. Ontogenetic evolution of bone structure in Late Cretaceous Plesiosauria from New Zealand. Geobios 28: 625–640.
  • Wiman, C. 1910. Ichthyosaurier aus der Trias Spitzbergens. Bulletin of the Geological Institute of the University of Upsalla 10: 124–148.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-cd9ae452-0257-4174-a8d3-5751d91d2dd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.