PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 1 |

Tytuł artykułu

Development of synbiotics with inulin, palatinose, alpha-cyclodextrin and probiotic bacteria

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Success in creating a synbiotic depends on compatibility between the chosen components – prebiotic and probiotic. In this work the interactions between Lactobacillus sp. strains isolated from yogurts and type strains of Lactobacillus sp. and Lactococcus sp., and the dependence of their growth and antibacterial activity on three oligosaccharides (OS) – palatinose, inulin and α-cyclodextrin were investigated. All isolated lactobacilli produce antibacterial compounds, which possibly are the bacteriocins of Lactobacillus casei ATCC334 strain. Results of growth analysis with different OS revealed that part of lactobacilli isolated from yogurts can effectively ferment inulin and may be used for the development of synbiotics. Palatinose and Lactobacillus acidophilus could be used as symbiotics with effective antibacterial activity. One of the types of Lactococcus sp. strains can assimilate palatinose and α-cyclodextrin, so they both can be used as components of synbiotics with the investigated lactococci. Results of this analysis suggest that the investigated isolated and type strains of Lactobacillus sp. and Lactoccocus sp. can be useful as probiotics in the development of synbiotics. Together with prebiotics – palatinose, inulin and α-cyclodextrin, the synbiotics, which could regulate not only the growth of beneficial bacteria in the gastrointestinal tract, but also their antibacterial activity, can be created.

Wydawca

-

Rocznik

Tom

63

Numer

1

Opis fizyczny

p.33-41,fig.,ref.

Twórcy

autor
  • Department of Microbiology and Biotechnology, Vilnius University, LT-03100, M.K.Ciurlionio str.21/27 Vilnius, Lithuania
autor
  • Department of Microbiology and Biotechnology, Vilnius University, LT-03100, M.K.Ciurlionio str.21/27 Vilnius, Lithuania
autor
  • Department of Microbiology and Biotechnology, Vilnius University, LT-03100, M.K.Ciurlionio str.21/27 Vilnius, Lithuania
  • Department of Microbiology and Biotechnology, Vilnius University, LT-03100, M.K.Ciurlionio str.21/27 Vilnius, Lithuania

Bibliografia

  • Bosscher D., J. Van Loo and A. Franck. 2006. Inulin and ologofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr. Res. Rev. 19(2): 216–26.
  • Broadbent J.R., E.C. Neeno-Eckwall, B. Stahl, K. Tandee, H. Cai, W. Morovic, P. Horvath, J. Heidenreich, N.T. Perna, R. Barrangou and J.L. Steele. 2012. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BCM Genomics 13: 533.
  • Chen Y.-S., S. Srionnual, T. Onda and F. Yanagida. 2007. Effects of prebiotic oligosaccharides and trehalose on growth and production of bacteriocins by lactic acid bateria. Lett. Appl. Microbiol. 45: 190–193.
  • Digaitiene A., Å.S. Hansen, G. Juodeikiene, D. Eidukonyte and J. Josephsen. 2012. Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against Bacillus subtilis and fungi. J. Appl. Microbiol. 112: 732–742.
  • Dobson A., P.D. Cotter, R.P. Ross and C. Hill. 2012. Bacteriocin Production: a Probiotic Trait? Appl. Environ. Microb. 78(1): 1–6.
  • Gänzle M.G. and R. Fallador. 2012. Metabolism of oligosaccharides and starch in lactobacilli: a review. Food Microbiol. 340(3): 1–15.
  • Gibson G.R. and M.B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401–1412.
  • Goderska K., J. Nowak and Z. Czarnecki. 2008. Comparison of the growth of Lactobacillus acidophilus and Bifidobacterium bifidum species in media supplemented with selected saccharides including prebiotics. Acta Sci. Pol. 7(2): 5–20.
  • Holub I., A. Gostner, S. Theis, L. Nosek, T. Kudlich, R. Melcher and W. Scheppach. 2010. Novel findings of the metabolic effects of the low glycaemic carbohydrate isomaltulose (PalatinoseTM). Brit. J. Nutr. 103: 1730–1737.
  • Jo A., D. Nakata, K. Terao, M. Otani and K. Sano. 2007. New Synbiotics by the combination of α-cyclodextrin and lactic acid bacteria, Proceedings of 25th Cyclodextrin Symposium in Japan Tottori, Japan. p. 144–145.
  • Kormin S., G. Rusul, S. Radu and F.H. Ling. 2001. Bacteriocin-producing lactic acid bacteria isolated from traditional fermented food. Malays. J. Med. Sci. 8(1): 63–68.
  • Kunová G., V. Rada, I. Lisová, Š. Ročková and E. Vilková. 2011. In vitro Fermentability of Prebiotic Oligosaccharides by Lactobacilli. Czech. J. Food Sci. 29(Special Issue): 49–54.
  • Kuo Y.-C., C.-F. Liu, J.-F. Lin, A.-C. Li, T.-C. Lo and T.-H. Lin. 2013. Characterisation of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334. Appl. Microbiol. Biotechnol. 97(1): 237–246.
  • Macfarlane G.T., H. Steed and S. Macfarlane. 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104: 305–344.
  • Maldonado-Barragán A., J.L. Ruiz-Barba and R. Jiménez-Díaz. 2009. Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. Int. J. Food Microbiol. 130(1): 35–42.
  • Millette M., G. Carnut, C. Dupont, F. Shareck, D. Archambault and M. Lacroix. 2008. Capacity of Human Nisin-and Pediocin- Producing Lactic Acid Bacteria To reduce Intestinal Colonization by Vancomycin-Resistant Enterococci. Appl. Environ. Microbiol. 74(7): 1997–2003.
  • Ooi L.-G. and M.-T. Liong. 2010. Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings. Int. J. Mol. Sci. 11: 2499–2522.
  • Pan X., T. Wu, L. Zhang, L. Cai and Z. Song. 2009. Influence of oligosaccharides on the growth and tolerance capacity of lactobacilli to simulated stress environment. Lett. Appl. Microbiol. 48: 362–367.
  • Patel S. and A. Goyal. 2012. The current trends and future perspectives of prebiotics research: a review. 3 Biotech 2: 115–125.
  • Roberfroid M.B. 2007. Inulin-Type Fructans: Functional Food Ingredients. J. Nutr. 137: 2493S–2502S.
  • Rodríguez J.M., L.M. Cintas, P. Casaus, A. Suárez and P.E. Hernández. 1995. PCR Detection of the Lactocin S Structural Gene in Bacteriocin-Producing Lactobacilli from Meat. Appl. Environ. Microbiol. 61(7): 2802–2805.
  • Sambrook J. and D.W. Russell. 2001. Molecular cloning; a laboratory manual. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Saminathan M., C.C. Sieo, R. Kalavathy, N. Abdullah and Y.W. Ho. 2010. Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as probiotic for chickens. Afr. J. Microbiol. Res. 5(1): 57–64.
  • Swetwiwathana A., T. Zendo, J. Nakayama and K. Sonomoto. 2009. Identification of Nisin Z producing Lactococcus lactis N12 associated with traditional Thai fermented rice noodle (Kanom Jien). As. J. Food. Ag-Ind. 2(02): 116–125.
  • Szejtli J. 2004. Past, present and future of cyclodextrin research. Pure Appl. Chem. 76(10): 1825–1845.
  • Ueno C., A. Jo, D. Nakata, K. Terao, M. Otani, K. Sano, T. Oshima and N. Naeda. 2012. Enhacement of Antibacterial Activity of Manuka Honey on Periodontal Pathogenic Bacteria with α-Cyclodextrin, Proceedings of 29th Cyclodextrin Symposium. Hoshi univ., Tokyo, Japan. p. 198–199.
  • del Valle E.M.M. 2004. Cyclodextrins and their uses: a review, Process Biochem. 39(9): 1033–1046.
  • Vamanu E. and A. Vamanu. 2010. The influence of prebiotics on bacteriocin synthesis using the strain Lactobacillus paracasei CMGB16. Afr. J. Microbiol. Res. 4(7): 534–537.
  • Vera Pingitore E., E. Salvucci, F. Sesma and M.E. Nader-Macías. 2007. Different strategies for purification of antimicrobial peptides from Lactic Acid Bacteria (LAB), p. 557–568. In: Mendez-Vilas A. (Ed.). Communicating Current Research and Education Topics and Trends in Applied Microbiology. Microbiology Series n° 1, Vol. 2. Formatex, Spain.
  • Wagner E.M., K.-L.C. Jen, J.D. Artiss and A.T. Remaley. 2008. Dietary alpha-cyclodextrin lowers LDL-C and alters plasma fatty acid profile in LDLr-KO mice on a high-fat diet. Metabolism 57(8): 1046–1051.
  • Zhang H.-M., Z. Li, K. Uematsu, T. Kobayashi and K. Horikoshi. 2008. Antibacterial activity of cyclodextrins against Bacillus strains. Arch. Microbiol. 190: 605–609.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cd01eb14-6d43-4725-8940-b54cd733d581
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.