PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

Biogeochemical assessment of a Zn-contaminated site using scots pine (Pinus sylvestris L.) needles as phytoindicators

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our study was to evaluate the mobility of Zn in soils subjected to the activity of a zinc smelter and to assess the contamination of 1- and 2-year-old needles of Scots pine species sensitive to and tolerant of heavy metal contamination, particularly zinc. The trees were selected on the basis of their morphology, i.e., tolerant ones exhibited quite normal growth shape, but sensitive ones were more or less dwarves. Mineralogical composition revealed the prevalence of kaolinite in all soils except for two samples, where smectite dominated. Zinc contamination exceeded 30 times the geochemical background, and the reactive Zn forms represented 34.6% of total Zn content (ZnTotal). Proton generation capacity (α) indices calculated for the bioavailable Zn fraction (ZnBio) were 59% higher compared to the reactive Zn pool (ZnReac). Two-year-old tolerant (T) pine needles accumulated 21.9, 38.2, and 13.6% more Zn, Fe, and Mg, respectively, as compared to 1-year-old ones. For sensitive (S) needles, the range followed: 12.4, 48.8, and 7.3%, respectively. Iron was considered a “strategic survival element” for both pines growing under high zinc pollution. The transfer of Zn ions from the soil environment to plants still remains the basic source of maintaining its high concentrations in the needles, since air emissions ceased in 1996. The amounts of Zn accumulated by Scots pine at crucial years of metallurgical emissions may be considered as an additional time-constant source due to the evergreen vegetative lifecycle.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

p.2315-2325,fig.,ref.

Twórcy

autor
  • Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznan University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznan, Poland
autor
  • Department of Genetics and Plant Breeding, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland
  • Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznan University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznan, Poland
  • Department of Genetics, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
  • Department of Mineralogy and Petrology and Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznan, Poland

Bibliografia

  • 1. KLIMEK B. Effect of long-term zinc-pollution on soil microbial community resistance to repeated contamination. Bull. Environ. Contam. Toxicol. 88, 617, 2012.
  • 2. BUSSINOW M., SARAPATKA B., DLAPA P. Chemical degradation of forest soil as a result of polymetallic ore mining activities. Pol. J. Environ. Stud. 21 (6), 1551, 2012.
  • 3. NIKOLAIDIS C., ZAFIRIADIS I., MATHIOUDAKIS V., CONSTANTINIDIS T. Heavy Metal Pollution Associated with an Abandoned Lead–Zinc Mine in the Kirki Region, NE Greece. Bull. Environ. Contam. Toxicol. 85 (3), 307, 2010.
  • 4. DISANTE K., FUENTES D., CORTINA J. Sensitivity to zinc of Mediterranean woody species important for restoration. Sci. Total Environ. 408, 2216, 2010.
  • 5. AZOUZI R., CHAREF A., HAMZAOUI A. Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil. Environ. Earth Sci. 74 (4), 2967, 2015.
  • 6. RUTKOWSKA B., SZULC W., BOMZE K., GOZDOWSKI D., SPYCHAJ-FABISIAK E. Soil factors affecting solubility and mobility of zinc in contaminated soils. Int. J. Environ. Sci. Technol. 12, 1687, 2015.
  • 7. RODELLA A.A., CHIOU D.G. Copper, zinc and manganese mobilization in a soil contaminated by metallurgy waste used as micronutrient source. Commun. Soil Sci. Plant Anal. 40, 1634, 2009.
  • 8. MANARA A. Plant Responses to heavy metal toxicity. In. A. Furini (ed.), Plants and Heavy Metals, Springer Briefs in Biometals. ISBN 98-94-007-4440-0, 27, 2012.
  • 9. MARKERT B., BREURE A., ZECHMEISTER H., (eds.) Bioindicators & Biomonitors. Principles, Concepts and Applications. Elsevier, Amsterdam, 2003.
  • 10. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, the European Economic and Social Committee and the Committee of the Regions. A new EU Forest Strategy: for forests and the forest-based sector; COM(2013) 659 final. Brussels 20.9.2013.
  • 11. PARZYCH A., JONCZAK J. Pine needles (Pinus sylvestris l.) as bioindicators in the assessment of urban environmental contamination with heavy metals. J. Ecol. Eng., 15 (3), 29, 2014.
  • 12. GEROLD-ŚMIETAŃSKA I. Trends in changes of forest stands as observed at perennial experimental sites in the vicinity of the Zinc Smelter of the Miasteczko Śląskie. PhD thesis, Katowice, Uniwersytet Śląski, 124, [n Polish],m 2007.
  • 13. CREGG B. Conifer nutrition. Conifer Corner. Michigan Stet University (MSU), Soil and Plant Nutrient Laboratory, 42, 2005.
  • 14. HUETTL R.F. Mg deficiency – a “new” phenomenon in declining forest – symptoms and effects, causes, recuperation. In Huettl R.F. and Mueller Dombois D. (eds): Forest decline in the Atlantic and Pacific Region, Springer-Verlag, Berlin Heidelberg, 97, 1993.
  • 15. WOO S.Y. Forest decline of the world: A linkage with air pollution and global warming. Afr. J. Biotechnol. 8 (25), 7409, 2009.
  • 16. SOIL SURVEY STAFF. Soil survey field and laboratory methods manual. Soil Survey Investigations Rep. 51, Version 1.0. R. Burt (ed.) USDA, Natural Resources Conserv. Serv., Washington, DC, 2009.
  • 17. VALENTE S D.M., DE QUEIROZ D.M., DE CARVALHO P.F., Terra SANTOS N., SANTOS F.L. The relationship between apparent soil electrical conductivity and soil properties. Rev. Ciênc. Agron. 43 (4), 683, 2012.
  • 18. RECOMMENDED CHEMICAL SOIL TEST PROCEDURES FOR THE NORTH CENTRAL REGION. North Central Regional Research Publication No. 221 (Revised), 76, 2012.
  • 19. WANG X., WANG J., ZHANG J. Comparisons of three methods for organic and inorganic carbon in calcareous coils of Northwestern China. PLoS ONE 7 (8), e44334. doi:10.1371/journal.pone.0044334, 2012.
  • 20. APRILE F., LORANDI R. Evaluation of Cation Exchange Capacity (CEC) in Tropical Soils Using Four Different Analytical Methods. J. Agric. Sci. 4 (6), 278, 2012.
  • 21. HAZELTON P., MURPHY B. Interpreting soil test results. What do all the numbers mean? Pam Hazelton and NSW Department of Natural Resources, 160, 2007.
  • 22. TARAŠKEVIČIUS R., ZINKUTĖ R., STAKĖNIENĖ R., RADAVIČIUS M. Case study of the relationship between aqua regia and real total contents of harmful trace elements in some European soils. J. Chem. 2013 Article ID 678140:1-2013.
  • 23. GUPTA S.K., HÄNI H. Méthode pour la détermination dans les sols les concentrations de métaux lourds disponibles pour les plantes et les microorganismes et vérification dans les zones contaminées, Rapport final COST 681, Nr 2. (FAC), 1989.
  • 24. LI Q. Soil Remediation: Metal Leaching from Contaminated Soil through the Modified BCR Sequential Extraction Procedure. Master of Science Thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden., 34, 2012.
  • 25. ŚRODOŃ J. Identification and Quantitative Analysis of Clay Minerals. Chapter 2.2 in Handbook of Clay Science, Developments in Clay Science 5, F. Bergaya and G. Lagaly, eds., Elsevier, 25, 2013.
  • 26. KURBATOV M.H., KURBATOV G.B., WOOD J.D. Isothermal adsorption of cobalt from dilute solutions. J. Phys. Chem. 55, 1170, 1951.
  • 27. CHUDZINSKA E., DIATTA J., WOJNICKA-PÓŁTORAK A. Adaptation strategies and referencing trial of Scots and black pine populations subjected to heavy metal pollution. Environ. Sci. Pollut. R., 21 (3), 2165, 2014.
  • 28. VODYANITSKII Y.N. Zinc forms in soils. Eurasian Soil Science 43 (3), 269, 2010.
  • 29. RIM A., ABDELKRIM C., AHMED H. Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil. Environ. Earth Sci., 74 (4), 2967, 2015.
  • 30. JANKIEWICZ B., ADAMCZYK D. Assessing heavy metal content in soils surrounding a Power Plant. Pol. J. Environ. Stud. 19 (4), 849, 2010.
  • 31. VOLUNGEVIČIUS J., SKORUPSKAS R. Classification of anthropogenic soil transformation. Geologija 53, 4 (76), 165, 2011.
  • 32. HONG H., CHENG F., YIN K., CHURCHMAN G.J., WANG C. Three-component mixed-layer illite/smectite/kaolinite(I/S/K) minerals in hydromorphic soils, south China. Am. Mineral., 100, 1883, 2015.
  • 33. AKAY A., DOULATI B. The Effect of Soil Properties on Zn Adsorption. J. Int. Environ. Appl. Sci., 7 (1), 151, 2012.
  • 34. DIATTA J.B., WITCZAK R., SKUBISZEWSKA A. Zinc dynamics in an arable soil as affected by plant residues incorporation: agroenvironmental concern. Fresen. Environ. Bull. 18 (10a), 1957, 2009.
  • 35. DIATTA J., BIBER M., PRZYGOCKA-CYNA K., ŁUKOWIAK R. Application of soil-plant transfer coefficients and plant pollution indices for evaluating heavy metal contamination within the Marcinkowski’s Recreational Park (Poznań). Nauka Przyr. Technol. 5, 5, #79, ISSN 1897-7820 (http://www.npt.up-poznan.net), 2011.
  • 36. LINDSAY W.L. Chemical equilibria in soils. New York, NY, USA, John, Wiley and Sons, Inc. 1979.
  • 37. ALLOWAY B.J. Zinc in soils and crop nutrition. 2nd Ed. Int. published by IZA and IFA. Zinc Association, Brussels and Paris. ISBN 978-90-8133-310-8, 1-139, 2008.
  • 38. RUTKOWSKA B., SZULC W., BOMZE K., GOZDOWSKI D., SPYCHAJ-FABISIAK E. Soil factors affecting solubility and mobility of zinc in contaminated soils. Int. J. Environ. Sci. Technol. 12, 1687, 2015.
  • 39. STEPHAN C.H., COURCHESNE F., HENDERSHOT W.H., MCGRATH S.P., CHAUDRI A.M., SAPPIN-DIDIER V., SAUVE S. Speciation of zinc in contaminated soils. Environ. Pollut. 155 (2), 208, 2008.
  • 40. STIETIYA M.H. Sorption mechanisms of zinc in different clay minerals and soil systems as influenced by various natural ligands. PhD, Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College, 214, 2010.
  • 41. KIEPUL J., GEDIGA K. The effect of progressive acidification of lessive soil on zinc content and its translocation in soil profile. J. Elementol. 14 (2), 265, 2009.
  • 42. LIN W., XIAO T., ZHOU W., NING Z. Pb, Zn, and Cd Distribution and Migration at a Historical Zinc Smelting Site. Pol. J. Environ. Stud. 24 (2), 575, 2015.
  • 43. DIATTA J., CHUDZIŃSKA E. Chemical remediation of zinc contaminated soils by applying a cement-brown coal-based component (Cembro). Environ. Protect. Natur. Resour. 41, 89, 2009.
  • 44. WUANA R.A., OKIEIMEN F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network (ISRN) Ecology 2011, Article ID 402647, 2011.
  • 45. SCHULTEN H.R., LEINWEBER P. New insights into organic–mineral particles: composition, properties and models of molecular structure. Biol. Fertil. Soils, 30, 399, 2000.
  • 46. UCHIMIYA M., LIMA I.M., KLASSON K.T., WARTELLE L.H. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80 (8), 935, 2010.
  • 47. SEQUI P., De NOBILI M. Carbonio organico. In: Metodi di analisi chimica del suolo (Coordinatore P. Violante). Collana di metodi analitici per l’agricoltura diretta da P. Sequi. Franco Angeli, Milano, Capitolo VII, 1-5, 2000.
  • 48. DANDANMOZD F., HOSSEINPUR A.R. Thermodynamic parameters of zinc sorption in some calcareous soils. Journal of American Science 6 (7), 298, 2010.
  • 49. DASKALOPOULOU K., CALABRESE S., MILAZZO S., BRUSCA L., BELLOMO S., D’ALESSANDRO W., KYRIAKOPOULOS K., TASSI F., PARELLO F. Trace elements mobility in soils from the hydrothermal area of Nisyros (Greece). Annals of Geophysics, Fast Track 2, 1, 2014.
  • 50. GUPTA S.K., VOLLMER M.K and KREBS R. The importance of mobile, mobilisable and pseudo total metal fractions in soil for three-level risk assessment and risk management. Sci. Total Environ. 178, 11, 1996.
  • 51. GAŁUSZKA A. Different Approaches in Using and Understanding the Term “Geochemical Background” – Practical Implications for Environmental Studies. Pol. J. Environ. Stud. 16, 3, 389, 2007.
  • 52. KABATA-PENDIAS A., PENDIAS H. Trace elements in soils and plants. CRC Press, Boca Raton, 2001.
  • 53. CZARNOWSKA K. Total heavy metals content in bedrocks as a soil geochemical background. Rocz. Gleboznaw. Tom XLVII Supplement. Warsaw, 43, 1996 [In Polish].
  • 54. JEYAKUMAR P., LOGANATHAN P., ANDERSON C.W., SIVAKUMARAN S., McLAREN R.G. Comparative tolerance of Pinus radiata and microbial activity to copper and zinc in a soil treated with metal-amended biosolids. Environ Sci. Pollut. Res. Int. 21 (5), 3254, 2014.
  • 55. PROUST D. An Integrated Geochemical and Mineralogical Approach for the Evaluation of Zn Distribution in Long-Term Sludge-Amended Soil. J. Soil Sci. 5, 251, 2015.
  • 56. LIN W., XIAO T., ZHOU W., NING Z. Pb, Zn, and Cd Distribution and Migration at a Historical Zinc Smelting Site. Pol. J. Environ. Stud. 24 (2), 575, 2015.
  • 57. GUPTA S.K., ATEN C. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Int. J. Environ. Anal. Chem. 51, 25, 1993.
  • 58. BENJANIN M.M., LECKIE J.O. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxy-hydroxide. J. Colloid Interface Sci. 79, 209, 1981.
  • 59. CHRISTENSEN T.H., ASTRUP T., BODDUM J.K., HANSEN B.Ø., REDEMANN S. Copper and zinc distribution coefficients for sandy aquifer material. Water Res. 34 (3), 709, 2000.
  • 60. WYSZKOWSKI M., MODRZEWSKA B. Acidity and sorption properties of zinc-contaminated soil following the application of neutralising substances. J. Environ. Eng. 17 (1), 63, 2016.
  • 61. GONET B. Free radicals of the pine needles as an indicator of damage to forests caused by car exhaust gases. Curr. Top. Biophys. 33 (A), 73, 2010.
  • 62. VILČINSKAS R., KUPČINSKIENĖ E. Seasonal dynamics of histological parameters of the needles of Scots pine (Pinus sylvestris L.) growing in conditions of excess ammonia. Biologija. 58 (1), 27, 2012.
  • 63. BAŞLAR S., DOĞAN Y., BAĞ H., ELÇI A. Trace elements biomonitoring by needles of Pinus brutia TEN. From Western Anatolia, Turkey. Fresen. Environ. Bull. 12 (5), 450, 2003.
  • 64. BIAŁOBOK S., BORATYŃSKI A., BUGAŁA W. The biology of Scots pine, PAN Institute of Dendrology, Kórnik – Eds. Sorus, Poznan, 624, 1993 [In Polish].
  • 65. JELONEK T., PAZDROWSKI W., WALKOWIAK R., ARASIMOWICZ-JELONEK M., TOMCZAK A. Allometric Models of Foliage Biomass in Scots Pine (Pinus sylvestris L.). Pol. J. Environ. Stud., 20 (2), 355, 2011

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ccdd8bc2-a394-4fd2-a6c1-4a5528872149
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.