PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 2 |

Tytuł artykułu

Genetic structure among hibernacula of the endangered gray bat (Myotis grisescens)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In an attempt to fill knowledge gaps relating to genetic structure in the endangered gray bat (Myotis grisescens), we investigated geographic patterns in multilocus microsatellite DNA (msDNA) genotypes and mitochondrial DNA (mtDNA) haplotype frequencies across eight primary hibernacula. Isolation-by-distance (IBD) was absent in the msDNA data and no bottlenecks were detected, with genotypic diversity (AR = 6.52, Ho = 0.64) and overall genetic differentiation (FST = 0.024, P < 0.001) being comparable to other Myotis and North American vespertilionids. Genetic structure (ΦCT = 0.063, P < 0.001) among groups of populations (K = 2) was observed. We also identified a pattern of slight east-west regional genetic structure, likely attributable to the natural barrier of the Mississippi River Alluvial Plain, in the haplotype data (ΦCT = 0.086, P < 0.05), along with moderate IBD (r = 0.486, P < 0.05). Though genetic differentiation among populations was generally low, significant interpopulation genetic structure, likely arising from some degree of philopatric behavior and a lack of hibernacula-associated mating sites within the Mississippi River Alluvial Plain, was observed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.293-306,fig.,ref.

Twórcy

autor
  • U.S.Army Engineer Research and Development Center - Environmental Laboratory, Vicksburg, Mississippi, 39180, USA
autor
  • U.S.Army Engineer Research and Development Center - Environmental Laboratory, Vicksburg, Mississippi, 39180, USA
  • North Carolina Museum of Natural Sciences - Nature Research Center, Raleigh, North Carolina, 27603, USA
autor
  • Southern Environmental Law Center, 601 West Rosemary St.Suite 220, Chapel Hill, North Carolina, 27516, USA
autor
  • U.S.Army Engineer Research and Development Center - Environmental Laboratory, Vicksburg, Mississippi, 39180, USA
autor
  • U.S.Army Engineer Research and Development Center - Environmental Laboratory, Vicksburg, Mississippi, 39180, USA
autor
  • Western Anesthesiology Associates Inc., St. Louis, Missouri, 63011, USA
autor
  • U.S.Army Engineer Research and Development Center - Environmental Laboratory, Vicksburg, Mississippi, 39180, USA

Bibliografia

  • 1. B. D. Arnold 2007. Population structure and sex-biased dispersal in the forest dwelling vespertilionid bat, Myotis septen trionalis. American Midland Naturalist, 157: 374–384. Google Scholar
  • 2. H. Atterby , J. N. Aegerter , G. C. Smith , C. M. Conyers , T. R. Allnutt , M. Ruedi , and A. D. MacNicoll . 2010. Popu la tion genetic structure of the Daubenton's bat (Myotis daubentonii) in western Europe and the associated occurrence of rabies. European Journal of Wildlife Resources, 56: 67–81. Google Scholar
  • 3. T. Barbara , C. Palma-Silva , G. M. Paggi , F. Bered , M. F. Fay , and C. Lexer . 2007. Cross-species transfer of nuclear micro satellite markers: potential and limitations. Molecular Ecology, 16: 3759–3767. Google Scholar
  • 4. R. W. Barbour , Andw. H. Davis . 1969. Bats of America. University of Kentucky Press, Lexington, KY, 286 pp. Google Scholar
  • 5. R. M. R. Barclay , and G. P. Bell . 1988. Marking and observational techniques. Pp. 59–76, in Ecological and behavioral methods for the study of bats (T. H. Kunz , ed.). Smithsonian Institu tion Press, Washington, D.C., 533 pp. Google Scholar
  • 6. Y. Benjamini , and Y. Hochberg . 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57: 289–300. Google Scholar
  • 7. R. Bilgin , A. KarataŞ , E. Corman , and J. C. Morales . 2008. The mitochondrial and nuclear genetic structure of Myotis capaccinii (Chiroptera: Vespertilionidae) in the Eurasian transition, and its taxonomic implications. Zoologica Scripta, 37: 253–262. Google Scholar
  • 8. E. S. M. Boston , S. J. Puechmaille , D. D. Scott , D. J. Buckley , M. G. Lundy , I. W. Montgomery , P. A. Prodohl , and E. C. Teeling . 2012. Empirical assessment of non-invasive population genetics in bats: comparison of DNA quality from faecal and tissue samples. Acta Chiropterologica, 14: 42–52. Google Scholar
  • 9. J. T. Brady , T. H. Kunz , M. D. Tuttle , and D. E. Wilson . 1982. Gray Bat Recovery Plan. US Fish and Wildlife Service, Denver, CO, 143 pp. Google Scholar
  • 10. V. Castella , and M. Ruedi . 2000. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Molecular Ecology, 9: 1000–1002. Google Scholar
  • 11. V. Castella , M. Ruedi , and L. Excoffier . 2001. Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. Journal of Evolutionary Biology, 14: 708–720. Google Scholar
  • 12. J. M. Cornuet , and G. Luikart . 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144: 2001–2014. Google Scholar
  • 13. D. Dieringer , and C. Schlotterer . 2003. Microsatellite Anal yser (MSA): a platform independent analysis tool for large mi crosatellite data sets. Molecular Ecology Notes, 3: 167–169. Google Scholar
  • 14. M. D. Dixon 2011. Population genetic structure and natal philo patry in the widespread North American bat Myotis lucifugus. Journal of Mammalogy, 92: 1343–1351. Google Scholar
  • 15. I. Dupanloup , S. Schneider , and L. Excoffier . 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11: 2571–2581. Google Scholar
  • 16. D. A. Earl , and B. M. Von Holdt . 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources, 4: 359–361. Google Scholar
  • 17. P. J. Ersts 2011. Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Cen ter for Biodiversity and Conservation. Available from http://biodiversityinformatics.amnh.org/open_source/gdmg. Accessed 15 December 2014. Google Scholar
  • 18. G. Evanno , S. Regnaut , and J. Goudet . 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology 14: 2611–2620. Google Scholar
  • 19. L. Excoffier , and H. E. L. Lischer . 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10: 564–567. Google Scholar
  • 20. L. Excoffier , P. Smouse , and J. Quattro . 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479–491. Google Scholar
  • 21. C. H. Floyd , J. J. Flores-Marti'nez , G. L. Herrera M , O. Meji'a , and B. May . 2010. Conserving the endangered Mex ican fishing bat (Myotis vivesi): genetic variation indicates extensive gene flow among islands in the Gulf of California. Conservation Genetics, 11: 813–822. Google Scholar
  • 22. J. Foley , D. Clifford , K. Castle , P. Cryan , and R. S. Ostfeld . 2011. Investigating and managing the rapid emergen ce of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conservation Biology, 25: 223–231. Google Scholar
  • 23. J. Furmankiewicz , and J. Altringham . 2007. Genetic structure in a swarming brown long-eared bat (Plecotus auritus) population: evidence for mating at swarming sites. Conservation Genetics, 8: 913–923. Google Scholar
  • 24. O. E. Gaggiotti , O. Lange , K. Rassmann , and C. Gliddon . 1999. A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Molecular Ecology, 8: 1513–1520. Google Scholar
  • 25. J. Goudet , M. Raymond , T. De Meeus , and F. Rousset . 1996. Testing differentiation in diploid populations. Genetics, 144: 1933–1940. Google Scholar
  • 26. M. Goujon , H. McWilliam , W. Li , F. Valentin , S. Squizzato , J. Paern , and R. Lopez . 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research, 38 (Supplement): W695-9. Google Scholar
  • 27. E. M. Grigsby , W. L. Puckette , and K. W. Martin . 1993. Com par ative numbers of gray bats (Myotis grisescens) at four maternity caves in northeastern Oklahoma in 1981 and 1991. Proceedings of the Oklahoma Academy of Sciences, 73: 35–37. Google Scholar
  • 28. B. Guinand , K. T. Scribner , A. Topchy , K. S. Page , W. Punch , and M. K. Burnham-Curtis . 2004. Sampling issues affecting accuracy of likelihood-based classification using genetical data. Environmental Biology of Fishes, 69: 245–259. Google Scholar
  • 29. M. J. Harvey 1992. Bats of the eastern United States. Arkansas Game and Fish Commission, Little Rock, 46 pp. Google Scholar
  • 30. M. J. Harvey 1996. Status and management of endangered bats in Arkansas. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies, 50: 246–253. Google Scholar
  • 31. M. J. Harvey , J. S. Altenbach , and T. L. Best . 1999. Bats of the United States. Arkansas Game & Fish Commission, Little Rock, AR, 64 pp. Google Scholar
  • 32. M. J. Harvey , R. K. Redman , and C. S. Chaney . 2006. Endangered bats of Arkansas: distribution, status, and ecology. Game and Fish Commission and United States Fish and Wildlife Service , Center for the Management, Utilization, and Protection of Water Resources, Tennessee Technological University, Cookeville, Tennessee, 23 pp. Google Scholar
  • 33. M. J. Hubisz , D. Falush , M. Stephens , and J. K. Pritchard . 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9: 1322–1332. Google Scholar
  • 34. J. Jaccard , and C. K. Wan . 1996. LISREL approaches to interaction effects in multiple regression. Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-114. Google Scholar
  • 35. M. Jakobsson , and N. A. Rosenberg . 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23: 1801–1806. Google Scholar
  • 36. D. J. Judy , D. W. Sparks , J. O. Whitaker Jr. , and S. J. Oylermc Cance . 2010. Bat guano is useful for more than diet studies. Proceedings of the Indiana Academy of Science, 119: 95–98. Google Scholar
  • 37. G. J. Kleywegt 2005. SEQMAN version 070222: sequence manipulation and alignment. Uppsala University, Uppsala, Sweden. Unpublished program. Available at: http://xray.bmc.uu.se/usf/seqman_man.html. Google Scholar
  • 38. C. Kupper , T. Burke , T. Szekely , and D. A. Dawson . 2008. Enhanced cross-species utility of conserved microsatellite markers in shorebirds. BMC Genomics, 9: 502. Google Scholar
  • 39. M. A. Larkin , G. Blackshields , N. P. Brown , R. Chenna , P. A. McGettigan , H. McWilliam , F. Valentin , I. M. Wallace , A. Wilm , R. Lopez , et al. 2007. Clustal W and Clustal X version 2. Bioinformatics, 23: 2947–2948. Google Scholar
  • 40. P. L. Leberg 1992. Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution, 46: 477–494. Google Scholar
  • 41. N. Mantel 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209–220. Google Scholar
  • 42. C. O. Martin 2007. Assessment of the population status of the gray bat (Myotis grisescens): status review, DoD initiatives, and results of a multi-agency effort to survey wintering populations at major hibernacula, 2005–2007. Engineer Research and Development Center-Environmental Laboratory Technical Report TR-07-22. Google Scholar
  • 43. P. G. Meirmans , and P. W. Hedrick . 2011. Assessing population structure: F ST and related measures. Molecular Ecology Resources, 11: 5–18. Google Scholar
  • 44. Y. Michalakis , and L. Excoffier . 1996. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142: 1061–1064. Google Scholar
  • 45. S. R. Narum 2006. Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics, 7: 783–787. Google Scholar
  • 46. M. Nei 1987. Molecular evolutionary genetics. Columbia University Press, New York, NY, 512 pp. Google Scholar
  • 47. T. Ngamprasertwong , I. J. MacKie , P. A. Racey , and S. B. Piertney . 2008. Spatial distribution of mitochondrial and microsatellite DNA variation in Daubenton's bat within Scotland. Molecular Ecology, 17: 3243–3258. Google Scholar
  • 48. T. J. O'Shea , L. E. Ellison , and T. R. Stanley . 2004. Survival estimation in bats: historical overview, critical appraisal, and suggestions for new approaches. Pages 297–336, in Sam pling rare or elusive species: concepts, designs, and tech niques for estimating population parameters (W. L. Thompson , ed.). Island Press, Washington, D.C., 429 pp. Google Scholar
  • 49. J. K. Pritchard , M. Stephens , and P. Donnelly . 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. Google Scholar
  • 50. M. Raymond , and F. Rousset . 1995. GENEPOP, Version 1.2: population genetics software for exact tests and ecumenicism. Journal of Heredity, 86: 248–249. Google Scholar
  • 51. N. M. Rivers , R. K. Butlin , and J. D. Altringham . 2005. Genetic population structure of Natterer's bats explained by mating at swarming sites and philopatry. Molecular Ecology, 14: 4299–4312. Google Scholar
  • 52. F. Rousset 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145: 1219–1228. Google Scholar
  • 53. M. Ruedi , S. Walter , M. C. Fischer , D. Scaravelli , L. Excof Fier , and G. Heckel . 2008. Italy as a major Ice Age refuge area for the bat Myotis myotis (Chiroptera: Vesper tilionidae) in Europe. Molecular Ecology, 17: 1801–1814. Google Scholar
  • 54. SAS INSTITUTE. 2005. SAS Onlinedoc 9.1.3. SAS Institute Inc, Cary, NC. Google Scholar
  • 55. D. B. Sasse , R. L. Clawson , M. J. Harvey , and S. L. Hensley . 2007. Status of populations of the endangered gray bat in the western portion of its range. Southeastern Naturalist, 6: 165–172. Google Scholar
  • 56. R. S. Sikes , W. L. Gannon , and THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 57. M. Slatkin 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139: 457–462. Google Scholar
  • 58. S. J. Smith , D. M. Leslie Jr. , M. J. Hamilton , J. B. Lack , and R. A. Van Den Bussche . 2008. Subspecific affinities and con servation genetics of western big-eared bats (Corynorhinus townsendii pallescens) at the edge of their distribution range. Journal of Mammalogy, 89: 799–814. Google Scholar
  • 59. P. E. Smouse , J. C. Long , and R. R. Sokal . 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35: 627–632. Google Scholar
  • 60. P. Taberlet , S. Griffin , B. Goossens , S. Questiau , V. Manceau , N. Escaravage , L. Waits , and J. Bouvet . 1996. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research, 24: 3189–3194. Google Scholar
  • 61. G. F. Teacher , and D. J. Griffiths . 2011. HapStar: automated haplotype network layout and visualization. Molecular Ecol ogy Resources, 11: 151–153. Google Scholar
  • 62. A. Topchy , K. Scribner , and W. Punch . 2004. Accuracy-driven loci selection and assignment of individuals. Molecular Ecology Notes, 4: 798–800. Google Scholar
  • 63. R. G. Trujillo , and S. K. Amelon . 2009. Development of microsatellite markers in Myotis sodalis and cross-species amplification in M. gricescens, M. leibii, M. lucifugus, and M. septentrionalis. Conservation Genetics, 10: 1965–1968. Google Scholar
  • 64. M. D. Tuttle 1976. Population ecology of the gray bat (Myotis grisescens): philopatry, timing, and patterns of movement, weight loss during migration, and seasonal adaptive strategies. Occasional Papers of the Museum of Natural History, The University of Kansas, Lawrence, 54: 1–38. Google Scholar
  • 65. M. D. Tuttle 1979. Status, cause of decline, and management of endangered gray bats. Journal of Wildlife Management, 43: 1–17. Google Scholar
  • 66. M. D. Tuttle 2003. Estimating population sizes of hibernating bats in caves and mines. In Monitoring trends in bat populations of the United States and territories: problems and prospects (T. J. O'Shea and M. A. Bogan , eds.). U.S. Geological Survey, Biological Resources Discipline, Infor mation and Technology Report, USGS/BRD/ITR 2003-0003. Google Scholar
  • 67. USFWS. 2011. A National Plan for Assisting States, Federal Agen cies, and Tribes in Managing White-Nose Syndrome in Bats. US Fish & Wildlife Service, Hadley, MA, 17 pp. Google Scholar
  • 68. C. Van Oosterhout , W. F. Hutchinson , D. P. Wills , and P. Shipley . 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4: 535–538. Google Scholar
  • 69. S. Vege , and G. F. McCracken . 2001. Microsatellite genotypes of big brown bats (Eptesicus fuscus: Vespertilionidae, Chiroptera) obtained from their feces. Acta Chiropterologica, 3: 237–244. Google Scholar
  • 70. P. Villesen 2007. FaBox: an online toolbox for fasta sequences. Molecular Ecology Notes, 7: 965–968. Google Scholar
  • 71. B. S. Weir , and C. C. Cockerham . 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370. Google Scholar
  • 72. S. E. Weyandt , R. A. Van Den Bussche , M. J. Hamilton , and D. M. Leslie Jr. 2005. Unraveling the effects of sex and dis persal: Ozark big-eared bat (Corynorhunus townsendii ingens) conservation genetics. Journal of Mammalogy, 86: 1136–1143. Google Scholar
  • 73. J. Worthington Wilmer , and E. Barratt . 1996. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Research News, 37: 1–3. Google Scholar
  • 74. J. M. Zinck , D. A. Duffield , and P. C. Ormsbee . 2004. Primers for identification and polymorphism assessment of vespertilionid bats in the Pacific Northwest. Molecular Ecology Notes, 4: 239–242. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-ccc0b40f-635d-4d00-ab6b-0b55acad5dee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.