PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 2 |

Tytuł artykułu

Detecting Suaeda salsa L. chlorophyll fluorescence response to salinity stress by using hyperspectral reflectance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Measurements of chlorophyll fluorescence and hyperspectral reflectance were used to detect salinity stress in Suaeda salsa L., beach of Dongtai, Jiangsu Province, China. Three experimental sites were used in our study, which belong to low salinity, middle salinity and high salinity. The results showed that leaf chlorophyll fluorescence changed along salinity gradient. To select the sensitive hyperspectral ranges of leaf chlorophyll fluorescence, the correlationship between leaf chlorophyll fluorescence and hyperspectral reflectance was regressed and analyzed. Statistical results indicated that the 680 and 935 nm were the most sensitive hyperspectral bands for estimating leaf chlorophyll fluorescence. Then, 11 relative hyperspectral indices were selected based on the sensitive bands and previous literature. (R680 - R935)/(R680 + R935) and R680/ R935 have higher correlationship coefficient (R) and lower root mean square error, may be used for detecting chlorophyll fluorescence, such as Fo, Fm, Fv/Fm, qP, and UPSII, while NPQ may be detected by (R780 – R710)/ (R780 - R680). These results suggest that chlorophyll fluorescence of halophyte response to salinity stress could be identified by remote sensing.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

2

Opis fizyczny

p.581-588,fig.,ref.

Twórcy

autor
  • Key Laboratory of Agro-Ecological Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Changsha, China
  • Huanjiang Experimental Station of Karst Ecosystem, Chinese Academy of Sciences, 547100 Huanjiang, China
autor
  • Key Laboratory of DIgital Agriculture, Institute of Digital Agricultural Research, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
autor
  • Key Laboratory of DIgital Agriculture, Institute of Digital Agricultural Research, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
autor
  • Key Laboratory of Agro-Ecological Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Changsha, China
  • Huanjiang Experimental Station of Karst Ecosystem, Chinese Academy of Sciences, 547100 Huanjiang, China
autor
  • Key Laboratory of Agro-Ecological Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Changsha, China
autor
  • Huanjiang Experimental Station of Karst Ecosystem, Chinese Academy of Sciences, 547100 Huanjiang, China

Bibliografia

  • Ahmed S, Nawata E, Sakuratani T (2006) Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging. Environ Exp Bot 57:278–284
  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113
  • Blackburn GA (1998a) Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Environ 66:273–285
  • Blackburn GA (1998b) Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int J Remote Sens 19:657–675
  • Datt B (1999) Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int J Remote Sens 20:2741–2759
  • Ehrenfeld JG (1990) Dynamics and processes of barrier island vegetation. Rev Aquat Sci 2:437–480
  • Fernandez RT, Perry RL, Flore JA (1997) Drought response of young apple trees on three rootstocks. II. Gas exchange, chlorophyll fluorescence, water relations, and leaf abscisic acid. J Am Soc Hortic Sci 122:841–848
  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44
  • Gilmore AM (1997) Mechanistic aspects of xanthophylls cycledependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209
  • Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. Int J Remote Sens 4:273–288
  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349
  • Li G, Wan SW, Zhou J, Yang ZY, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops Prod 31:13–19
  • Maccioni A, Agati G, Mazzinghi P (2001) New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J Photochem Photobiol B: Biol 61:52–61
  • Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J (2009) Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens Environ 113:2037–2051
  • Naumann JC, Young DR, Anderson JE (2007) Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol Plant 131:422–433
  • Naumann JC, Anderson JE, Young DR (2008a) Linking physiological responses, chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using the physiological reflectance index in the coastal shrub, Myrica cerifera. Remote Sens Environ 112:3865–3875
  • Naumann JC, Young DR, Anderson JE (2008b) Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environ Exp Bot 63:402–409
  • Peñuelas J, Gamon JA, Fredeen AL, Merino J, Field CB (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48:135–146
  • Peñuelas J, Filella I, Baret F (1995a) Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31:221–230
  • Peñuelas J, Filella I, Gamon JA (1995b) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296
  • Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophylls cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486
  • Ross DJ (1992) Influence of sieve mesh size on estimates of microbial carbon and nitrogen by fumigation–extraction procedures in soils under pasture. Soil Biol Biochem 24:343–350
  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13
  • Schlemmer MR, Francis DD, Shanahan JF, Schepers JS (2005) Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J 97:106–112
  • Smethurst CF, Shabala S (2003) Screening methods for waterlogging tolerance in lucerne: comparative analysis of water logging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct Plant Biol 30:335–343
  • Smith M, Moss JS (1998) An experimental investigation, using stomatal conductance and fluorescence, of the flood sensitivity of Boltonia decurrens and its competitors. J Appl Ecol 35:553–561
  • Yang J, Tian YC, Zhu Y, Chen QC, Yao X, Cao WX (2009) A new spectral index for estimating protein nitrogen concentrations in top leaves of rice. Sci Agric Sin 42:2695–2705 (In Chinese)
  • Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL (2000a) Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sens Environ 74:582–595
  • Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2000b) Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sens Environ 74:596–608
  • Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2001) Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. Int J Appl Earth Obs 3:321–327
  • Zarco-Tejada PJ, Pushnik JC, Dobrowski SZ, Ustin SL (2003) Steady state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens Environ 84:283–294
  • Zarco-Tejada PJ, Miller JR, Harron J, Hu B, Noland TL, Goel N, Mohammed GH, Sampson P (2004) Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies. Remote Sens Environ 89:189–199
  • Zarco-Tejada PJ, Berni JAJ, Suárez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113:1262–1275
  • Zhang H, Li JN, Wang GX, Dai XF, Qiu MQ, Zheng KF (2008) Plants interactions between Suaeda salsa individuals are mediated by salinity stress. Acta Physiol Plant 30:99–104
  • Zhang H, Wang GX, Zheng KF, Zhang WP (2010) Mass–density relationship changes along salinity gradient in Suaeda salsa L. Acta Physiol Plant 32:1031–1037

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ccaf18f7-c6d0-43b1-82c3-cff6cd275d95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.