

2015, vol. 73, 91-101

http://dx.doi.org/10.12657/denbio.073.009

Zuzana Špinlerová

Determination of the biomass of *Pinus mugo* stands

Received: 27 February 2014; Accepted: 29 August 2014

Abstract: The dwarf pine stands on unoriginal sites in mountainous areas of the Czech Republic are a current topic of scientific discussion. One of these sites is on the summits of the Hrubý Jeseník Mts. Various proposals for dwarf pine removal have been hindered by the absence of charts or tables that could be used to calculate how much biomass would need to be removed. Therefore, we created a methodology for dwarf pine biomass determination and applied it to five research transects of different ages. Based on the biomass estimates, we created trend curves illustrating the increase in biomass (dependent on age) as well as equations that could be used to roughly estimate the biomass of any dwarf pine stand, regardless of age or canopy level, for sites above the timberline in Hrubý Jeseník Mts. The equations for biomass calculations could also be applied to other mountain ranges where artificially planted dwarf pines of the same seed origin or the same morphological appearance as those existing in the Hrubý Jeseník Mts. are found.

Additional key words: dwarf pine, aboveground biomass, issue of indigeneity (originality problem), removal

Address: Z. Špinlerová, Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Botany, Dendrology and Geobiocoenology, Zemědělská 3, 613 00 Brno, Czech Republic, e-mail: zuzana.spinlerova@mendelu.cz

Introduction

Pinus mugo Turra /syn. *P. mugo* ssp. *mughus* (Scop.) Dom./ is a variable and taxonomically complicated species. Complex of this pine has many unknown traits, including the origin of the taxa, the classification and the natural range of *Pinus mugo*. The issues of its origin and the taxonomic classification of individual shrubs and populations have been addressed by many methods examining various properties of specimens or entire populations. Older methods include studying morphological and anatomical features, such as biometric analyses, but advances in technology favor newer polyprenol analyses, isoenzyme genotype analyses and allozyme studies of genetic variability.

The presence of non-indigenous or probable non-indigenous stands in the Jeseníky, Orlické hory and Krkonoše mountains has become a topic of much debate in the Czech Republic. The dwarf pine is indigenous to the peat bogs of the supramontane belt of the Krkonoše Mts. and is also a natural component of many biotopes within the subalpine belt. However, introduced dwarf pines grown from seeds from Germany or Austria were planted in the ridges at the end of the 19th century (Lokvenc 2003). These non-indigenous stands have recently been carefully and gradually removed.

The non-indigeneity of the dwarf pine in the Hrubý Jeseník Mts. (part of the Jeseníky Mts.) has been discussed because these mountains contain more than 350 ha (Senfeldr et al. 2012) of planted dwarf pine stands. These stands thrive, as they are typical mountain heliophytes with optimal growth design. The dwarf pine was first planted in the Hrubý Jeseník Mts. in 1877 in the Bruntál domain (because of shift of the timberline and water flow regulation) and the planting continued in 1921 after disastrous landslides in the Sumperk district. The seed for these plantings was purchased in Innsbruck or in Wiener Neustadt. Other, more extensive planting occurred in the 1970s in the area of Petrovy kameny – Velký Máj, including the cirques of Velká kotlina and Malá kotlina. Unfortunately, there are no records about the origin of seed (Holubičková 1980).

Due to the alleged influence of the dwarf pine on the gradual deterioration of the condition of several valuable eco-phenomena of the Hrubý Jeseník summits (e.g., disruption of arcto-alpine communities of tundra character), several proposals for dwarf pine reduction have been created and partially implemented by the Administration of the Protected Landscape Area of Jeseníky Mts.

In response to the dwarf pine reduction proposals (without solution of technical-institutional aspects of the problem), the primary aim of this study, funded by the GS LCR (Grant service of the Forests of the Czech Republic), is to estimate the aboveground biomass of the dwarf pines growing above the timberline in the Hrubý Jeseník Mts. that would have to be addressed before the potential removal of the stands. Because there are no tables that determine the biomass of the dwarf pine stands, the aims of this study were to create a methodology for determining the dwarf pine biomass and trend curves expressing the increase in biomass based on age. These tools were further used to derive equations for biomass estimation in all dwarf pine stands in Hrubý Jeseník Mts., of various age classes and various levels of canopy (meant as various canopy density).

Overview of the literature on dwarf pine growth and the formation of biomass

Authors have generally concentrated more on dwarf pine growth dynamics than on the biomass. There are essentially three categories of research:

1. Studies about the dynamics of dwarf pine stands using analyses of aerial photos.

These studies compare the current conditions with those shown in historical aerial photos and are analyses of the changes in the cover of dwarf pine stands over time. This topic has been addressed by many Czech and foreign authors using manual visual methods and automated classification methods, e.g., Fišerová (1991), Lokvenc and Vacek (1991), Carmel and Kadmon (1998), Kadmon and Harari-Kremer (1999), Potočka (1999), Souček et al. (2001), Halounová (2004), Müllerová (2005), Wild (2006a), Palombo et al. (2013) and others.

The dynamics of dwarf pine stands using analyses of aerial photos specifically in the Hrubý Jeseník Mts. have been addressed by Hošek et al. (2005), Wild (2006b), Wild et al. (2007).

2. Studies about the growth dynamics of dwarf pine stands using dendrometric and dendrochronological methods.

Analyses of the diameter increments of the dwarf pine have been conducted by Kolischuk and Berko (1967), Kolischuk (1969), Heikkinen (1980), Bitterli (1987), Corona (1987a), Simon and Drápela (1987) and Hohl et al. (2002), Kyncl and Wild (2004), Špinlerová and Martinková (2006, 2009), Palombo et al. (2014), among others.

Jeseníky dwarf pines on sites exposed to pollution were studied partially by Simon and Drápela (1987). Their results showed that the diameter increment had not fluctuated for thirty years. Dendrochronological analyses of selected shrubs in Hrubý Jeseník Mts. were performed by Hošek et al. (2005).

 Studies about the growth dynamics of dwarf pines based on length increment. The length increment of the dwarf pine has not been well monitored. An older study by Popovic (1976) describes the growth of the dwarf pine in the Vršič Mts. and a more recent study by Špinlerová and Martinková (2006) contains a growth analysis of the dwarf pine in the Orlické hory Mts. The length increment of the dwarf pine (specifically the length of the last ten increments of the main branches) in Jeseníky Mts. was studied by Hošek et al. (2005).

The knowledge gained from studies into the dynamics of stands provides a foundation for theories about the speed of biomass formation. Literature summarizing the data about the amounts of dwarf pine biomass (of single specimens or entire stands) is scarce. The authors more often address the biomass of the herbal (moss) growth under the dwarf pine - e.g., Kubíček et al. (1983), Kubíček (2001) or the total aboveground biomass of the community. Bliss (1962) provided a production of tundra ecosystems within one growing season and the productivity of the natural tundra communities was evaluated by Malinovskij (1984) and Archibold et al. (1995). The volume and weight of the "stems" and branches and the weight of needles within one dwarf pine specimen growing at an altitude of 1900 m in the Vršič Mts. was published by Popovic (1976). The range

of the determined volume of dwarf pine stems from eastern Trentino (Northern Italy) presented Corona (1987b).

Methods

The original intention – to determine the biomass of one specimen or the polycormon of one mother plant - was abandoned after the terrain survey. The dwarf pines in the area grow wildly with a complicated vegetative propagation, which makes terrain orientation impossible. Therefore, five representative 100% closed-canopy transects of non-indigenous stands (with areas of 4 m²) of different ages or dwarf pine heights (stands of the 15th, 8th, 4th and 2nd age class) were selected on sites near the summit of Keprník (K) and in the Větrná louka (V) /Fig. 1, Table 1 /. (One age class in the Czech forestry terminology in this case means age range of 10 years. For example, the stand of the 2nd age class may have 11 to 20 years.) All transects were located in the Protected Landscape Area, transects K also in the National Nature Reserve (NNR) Šerák – Keprník and V in the NNR Praděd.

The dwarf pine is, as mentioned, in all selected transects difficult growing, generating polycormons. Shrubs are densely branched, closed. The main branches (plumules) of the shrubs are loosing terminal character (the apical dominance); reaching almost the same height that does not exceed 3.5 m. The branches are prostrate at the base, but then bent into an arc and grow into an upright form (form is close to cubic paraboloid).

The understory in these stands (transects) is very poor, only with a few species, as *Vaccinium myrtillus*, *Avenella flexuosa*, *Calamagrostis villosa*, *Nardus stricta*, *Trientalis europaea* or *Calluna vulgaris*.

All aboveground dwarf pine biomass was removed from the transects.

The material was transported to the laboratory, where the fresh mass and volume were measured. The masses of the large timber (the above-ground woody mass including bark with a diameter greater than 0.07 m), small timber (the above-ground woody mass including bark with a diameter less than 0.07 m) and needles were determined separately using a hanging scale (digital, 100 g accuracy). The mass of cones was determined using a electronic scales Kern 822 (1000 g accuracy). The volume of the large tim-

Site	Transect	Age class	Latitude	Longitude
Keprník	K1	15 (150 years)	50°10'13.687"N	17°7'1.709"E
Keprník	K2	15 (150 years)	50°10'13.060"N	17°7'2.387"E
Keprník	К3	8 (80 years)	50°10'15.164"N	17°7'1.963"E
Větrná louka	V1	4 (39 years)	50°3'48.504"N	17°14'31.664"E
Větrná louka	V2	2 (18 years)	50°3'52.163"N	17°14'30.024"E

Fig. 1. The overall study area with location of representative transects K1, K2, K3 and V1, V2. All dwarf pine stands in Hrubý Jeseník Mts. are non-indigenous. Natural stands in the Czech Republic are relatively distant, as also natural stands in Poland or in Slovakia

ber was calculated as the sum of volumes of 25 cm sections using a formula for the calculation of a truncated cone (Packová and Maděra 2004).

Truncated cone calculation formula:

$$V = \frac{\pi v}{3} (r_1^2 + r_1 r_2 + r_2^2)$$

where r_1 and r_2 are the radii of the bases; v is the height.

The volume of the small timber and needles was calculated from the determined fresh mass and vol-

Fig. 2. Transect K3 – 80-year-old stand (the stand of the 8th age class) in Keprník (Photo: Z. Špinlerová)

ume of ten sample branches and fifty couples of needles in the graduated cylinder.

Next, the material was dried at 105° C in the drying chamber to a constant weight and the dry mass was determined (using the digital hanging scale, for cones using electronic scales). Samples of needles (10 couples from each year) were scanned both before and after drying and their area was determined using the Quick PHOTO MICRO application (developed by Promicra, s.r.o.; Prague; Czech Republic; Europe). The area of the sample needles was averaged for each

Table 2. Parameters determined in selected transects

year and the average was used to calculate the total area of the needles (the needle surface area calculated from the averaged surface area of needles and the total number of needles occurring in the area of 4 m²).

All of the results were converted to an area of $1 m^2$, or 1 ha. The values for the two 150-year-old plots were averaged.

Based on the results from the transects, trend curves expressing the increase in fresh biomass (mass and volume) in relation to age were created; further, the trend curves were used to derive equations for the biomass calculation for dwarf pine stands of different age classes.

The equations were used to express the biomass of all dwarf pine stands with different canopy levels on sites above the timberline of the Hrubý Jeseník Mts.

Results

Figure 2 shows the process of setting out the selected plots.

The results for specific transects are presented in Table 2. The results converted to an area of 1 m^2 , are in Table 3. The parameters were determined separately for large timber, small timber, needles and

Transect K1	(≈ 150 yr)	Transect K2	(≈ 150 yr)	Transect K	3 (≈ 80 yr)	Transect V	/1 (≈ 40 yr)	Transect V2 (≈ 20 yr)				
Height	≈ 2.5 m	Height ≈	= 3.2 m	Height	≈ 1.3 m	Height	t≈1.3 m	Height	t ≈ 1.2 m			
Fresh ma	ass/4 m ²	Fresh ma	ss/4 m ²	Fresh m	ass/4 m ²	Fresh n	nass/4 m²	Fresh n	nass/4 m²			
Large timber	60 kg	Large timber	93.3 kg	Large timber	10.0 kg	Large timber	2.6 kg	Large timber	1.3 kg			
Small timber	33.5 kg	Small timber	5.1 kg	Small timber	50.1 kg	Small timber	42.9 kg	Small timber	39.2 kg			
Needles	5.8 kg	Needles	14.5 kg	Needles	12.2 kg	Needles	13.4 kg	Needles	13.5 kg			
Cones	0.8 kg	Cones	0.8 kg	Cones	1.0 kg	Cones	0.488 kg	Cones	0.130 kg			
Total	100.1 kg	Total	113.7 kg	Total	73.3 kg	Total	59.388 kg	Total	54.13 kg			
Dry ma	ss/4 m ²	Dry mas	s/4 m ²	Dry ma	ss/4 m ²	Dry m	ass/4 m²	Dry m	ass/4 m ²			
Large timber	40.6 kg	Large timber	63.8 kg	Large timber	6.8 kg	Large timber	1.6 kg	Large timber	0.6 kg			
Small timber	22.2 kg	Small timber	2.3 kg	Small timber	34.1 kg	Small timber	25.3 kg	Small timber	19.2 kg			
Needles	2.8 kg	Needles	6.5 kg	Needles	6.5 kg	Needles	6.4 kg	Needles	6.8 kg			
Cones	0.4 kg	Cones	0.420 kg	Cones	0.532 kg	Cones	0.242 kg	Cones	0. 065 kg			
Total	66 kg	Total	73.02 kg	Total	47.932 kg	Total	33.542 kg	Total	26.665 kg			
Fresh mass v	volume/4 m ²	Fresh mass v	olume/4 m ²	Fresh mass v	volume/4 m ²	Fresh mass	volume/4 m ²	Fresh mass volume/4 m ²				
Large timber	0.08 m ³	Large timber	0.12 m ³	Large timber	0.0284 m ³	Large timber	0.0072 m ³	Large timber	0.0024 m ³			
Small timber	0.04 m ³	Small timber	0.01 m ³	Small timber	0.1036 m ³	Small timber	0.0776 m ³	Small timber	0.0612 m ³			
Needles	0.0444 m ³	Needles	0.0912 m ³	Needles	0.0544 m ³	Needles	0.0704 m ³	Needles	0.0664 m ³			
Total	0.1644 m ³	Total	0.2212 m ³	Total 0.1864 m		Total	0.1552 m ³	Total	0.1300 m ³			
Needle a	rea/4 m ²	Needle ar	rea/4 m ²	Needle a	rea/4 m ²	Needle	area/4 m ²	Needle area/4 m ²				
Fresh	8.36 m ²	Fresh	20.52 m ²	Fresh	21.64 m ²	Fresh	20.64 m ²	Fresh	20.44 m ²			
Dry	7.56 m ²	Dry	17.96 m ²	Dry	17.72 m ²	Dry	17.52 m ²	Dry	16.24 m ²			
Number pairs/	of needle ⁄4 m²	Number o pairs/	of needle 4 m ²	Number pairs,	of needle /4 m²	Number pairs	of needle s/4 m ²	Number of needle pairs/4 m ²				
79 94	9 pcs	210 56	0 pcs	179 9	33 pcs	203 7	720 pcs	232 680 pcs				

Fig. 3. Correlation between age class and the largest diameter of the branch base in selected transects (One age class means age range of 10 years. All dwarf pine ages in selected transects were at /or were approaching/ the upper limit of the age class)

cones. The total values were converted to an area of 1 ha (Table 4).

Figure 3 demonstrates correlation between the age class and the largest stem diameter of the branch base in selected transects. Figs 4 and 5 show the trend curves expressing the increasing biomass (mass and volume) based on age. The curves were used to create equations for the biomass calculation of dwarf pine stands of various age classes and canopy levels.

The equation for the calculation of the total fresh mass (t/ha):

$$\gamma = 121.37e^{0.0052x}$$

The equation for the calculation of the large timber fresh mass (t/ha):

$$\gamma = 1.8395e^{0.0313x}$$

in both equations: x =stand age.

The equation for the calculation of the total fresh mass volume (m^3/ha) :

$$\gamma = 81.838 Ln(x) + 86.386$$

The equation for the calculation of the large timber fresh mass volume (m^3/ha) :

$$\gamma = 0.0113x^2 - 0.0504x + 2.4725$$

in both equations: x =stand age.

Using these equations and the data regarding the distribution and cover of the dwarf pine, we estimated the biomass above the timberline of the Hrubý Jeseník Mts. The calculation shows that in the 360 ha area of the stands (of which 142 ha actually con-

Fig. 5. Estimate of trends in the difference of volume (m³/ ha) of the aboveground dwarf pine biomass, dependent on increasing age

tain dwarf pines), there is 30 171 t and 66 325 m³ of biomass, of which 9 892 t and 18 428 m³ is large timber. The specific values calculated for individual segments of the dwarf pine stands, as defined by Šenfeldr et al. (2013), are presented in Table 5.

Discussion

Due to the scarcity of literature on the biomass of the dwarf pine, it is difficult to compare our results with those of other authors. Previously published information about dwarf pine biomass either relates to individual specimens (Popovic 1976) or individual branches (Špinlerová and Martinková 2006). Theoretically, it would be possible to calculate or estimate the number of dwarf pine specimens in the explored

◆ total weight of fresh mass □ fresh mass of large timber

Fig. 4. Estimate of trends in the difference of mass (t/ha) of aboveground dwarf pine biomass, dependent on increasing age

Transect K1	l (≈ 150 yr)	Transect K2	(≈ 150 yr)	Transect K	3 (≈ 80 yr)	Transect V	/1 (≈ 40 yr)	Transect V2 (≈ 20 yr)				
Height	≈ 2.5 m	Height #	≈ 3.2 m	Height	≈ 1.3 m	Height	i ≈ 1.3 m	Height ≈ 1.2 m				
Fresh m	nass/m²	Fresh m	ass/m ²	Fresh m	nass/m²	Fresh	mass/m²	Fresh r	mass/m²			
Large timber	15.000 kg	Large timber	23.325 kg	Large timber	2.5000 kg	Large timber	0.6500 kg	Large timber	0.3250 kg			
Small timber	8.375 kg	Small timber	1.275 kg	Small timber	12.5250 kg	Small timber	10.7250 kg	Small timber	9.8000 kg			
Needles	1.450 kg	Needles	3.625 kg	Needles	3.0500 kg	Needles	3.3500 kg	Needles	3.3750 kg			
Cones	0.2 kg	Cones	0.2 kg	Cones	0.2500 kg	Cones	0.1220 kg	Cones	0.0325 kg			
Total	25.025 kg	Total	28.425 kg	Total	18.3250 kg	Total	14.8470 kg	Total	13.5325 kg			
Dry ma	ass/m²	Dry ma	ass/m ²	Dry ma	ass/m²	Dry n	nass/m²	Dry m	nass/m²			
Large timber	10.15 kg	Large timber	15.95 kg	Large timber	1.7000 kg	Large timber	0.4000 kg	Large timber	0.1500 kg			
Small timber	5.550 kg	Small timber	0.575 kg	Small timber	8.5250 kg	Small timber	6.3250 kg	Small timber	4.8000 kg			
Needles	0.700 kg	Needles	1.625 kg	Needles	1.6250 kg	Needles	1.6000 kg	Needles	1.7000 kg			
Cones	0.100 kg	Cones	0.105 kg	Cones	0.1330 kg	Cones	0.0605 kg	Cones	0.0162 kg			
Total	16.500 kg	Total	18.255 kg	Total	11.9830 kg	Total 8.3855 kg		Total	6.6662 kg			
Fresh mass	volume/m ²	Fresh mass	volume/m ²	Fresh mass	volume/m ²	Fresh mass	s volume/m²	Fresh mass	s volume/m ²			
Large timber	0.02 m ³	Large timber	0.03 m ³	Large timber	0.0071 m ³	Large timber	0.0018 m ³	Large timber	0.0006 m ³			
Small timber	0.0100 m ³	Small timber	0.0025 m ³	Small timber	0.0259 m ³	Small timber	0.0194 m ³	Small timber	0.0153 m ³			
Needles	0.0111 m ³	Needles	0.0228 m ³	Needles	0.0136 m ³	Needles	0.0176 m^3	Needles	0.0166 m ³			
Total	0.0411 m ³	Total	0.0553 m ³	Total	Total 0.0466 m ³		0.0388 m ³	Total	0.0325 m ³			
Needle	area/m²	Needle a	area/m²	Needle a	area/m²	Needle	area/m²	Needle area/m ²				
Fresh	2.09 m ²	Fresh	5.13 m ²	Fresh	5.41 m ²	Fresh	5.16 m ²	Fresh	5.11 m ²			
Dry	1.89 m ²	Dry	4.49 m ²	Dry	4.43 m ²	Dry	4.38 m ²	Dry	4.06 m ²			
Number pairs	of needle s/m²	Number o pairs	of needle /m²	Number o pairs	of needle s/m²	Number pair	of needle	Number of needle				
19 98	7 pcs	52 64	0 pcs	44 98	33 pcs	50 9	30 pcs	58 1	70 pcs			

Table 3. Parameters determined in selected transects converted to an area of 1 m²

Jeseníky plots and compare the averages characterizing individual specimens with the results of other authors. However, this approach is unfeasible in practice because of the complicated growth of dwarf pines. Moreover, the ages of stands (individuals) or size parameters that are mentioned in the literature dealing with dwarf pine biomass are not exactly the same as the ages or size parameters of dwarf pine studied in selected transects. Other sources that mention the biomass of dwarf pine stands (e.g., Malinovskij 1984) cannot be used for comparison as they describe the values of natural communities without specifying size parameters. The dwarf pines in natural communities do not reach the same growth velocity and parameters as those in unnatural (and anthropogenically modified) sites.

The acquired values of the total fresh aboveground biomass converted to 1 ha (135–267 t/ha and 325–482 m³/ha) in stands of the 2nd to the 15th age class may seem high. The reason for the large amount of biomass is the complicacy and the tenacity of pine polycormons. Moreover, the parameters presented in common forestry practice only concern large timber and not the entire aboveground mass. The values of the total aboveground biomass were calculated and are presented intentionally because of the current issue of complete dwarf pine mass removal and the further processing and use of the resulting materials.

The results of this study confirm the assumption that removing the biomass of the dwarf pines would not be an easy task. For example, the aboveground biomass of the oldest stands in the explored area,

Table 4. Basic data from the transect biomass converted to 1 ha

	Transect K1.K2 – average	Transect K3	Transect V1	Transect V2
Fresh mass of large timber/ha	191.625 t	25 t	6.5 t	3.25 t
Fresh mass of small timber/ha	48.25 t	125.25 t	108.8 t	98 t
Total weight of fresh mass/ha	267.25 t	183.20 t	148.47 t	135.32 t
Total weight of dry mass/ha	173.75 t	119.83 t	83.86 t	66.66 t
Fresh large timber volume/ha	250 m ³	71 m ³	18 m ³	6 m ³
Fresh small timber volume/ha	62.5 m ³	259 m ³	194 m ³	153 m ³
Total fresh mass volume/ha	482 m ³	466 m ³	388 m ³	325 m ³

according 1	to their co. Stand area		Reduced dwarf		Total hiomace	Total hiomace in	I arge timber	I arge timber (t)	Total biomace	Total hiomace (m ³)	I aros timber	I arge timber (m ³)
number	(ha)	Cover (%)	pine area (ha)	Age	(t/1ha)	the total area (t)	t/1ha)	in the total area	$(m^3/1ha)$	in the total area	$(m^3/1ha)$	in the total area
	5.9210	14.50	0.8585	06	28.1005	166.3831	4.4613	26.4153	65.9207	390.3167	12.9721	76.8083
2	27.5723	48.24	13.3006	06	93.4887	2577.7004	14.8424	409.2405	219.3144	6047.0043	43.1577	1189.9582
33	18.7325	27.60	5.0690	06	52.4431	982.3917	8.3260	155.9663	123.0259	2304.5838	24.2096	453.5069
4	1.8706	45.96	0.8598	06	89.0811	166.6351	14.1426	26.4553	208.9745	390.9078	41.1230	76.9246
5	14.9293	34.05	5.0837	80	62.6493	935.3111	7.6614	114.3803	151.5308	2262.2495	24.0951	359.7237
9	0.7993	55.68	0.4450	100	113.6653	90.8527	23.4274	18.7255	257.9360	206.1683	61.4866	49.1462
7	2.3815	42.01	1.0004	80	77.2846	184.0534	9.4512	22.50812	186.9294	445.1724	29.7239	70.7875
8	2.0058	45.45	0.9117	80	83.6252	167.7355	10.2266	20.5125	202.2655	405.7042	32.1625	64.5116
6	4.9797	46.89	2.3350	80	86.2713	429.6052	10.5502	52.5369	208.6655	1039.0919	33.1802	165.2276
10	6.7550	39.18	2.6465	80	72.0814	486.9101	8.8149	59.5448	174.3443	1177.6959	27.7227	187.2672
11	0.8384	29.90	0.2507	100	61.0373	51.1736	12.5803	10.5473	138.5094	116.1262	33.0177	27.6820
12	5.5382	51.31	2.8416	80	94.4011	522.8124	11.54443	63.9353	228.3293	1264.5335	36.3069	201.0754
13	3.1324	59.82	1.8737	80	110.0527	344.7293	13.4584	42.1573	266.1861	833.8014	42.3266	132.5840
14	2.5566	43.74	1.1181	80	80.4660	205.7196	9.8402	25.1577	194.6244	497.5767	30.9475	79.1204
15	1.0509	53.13	0.5583	110	114.2538	120.0693	30.5716	32.1277	250.2781	263.0172	71.0132	74.6278
16	1.1818	50.58	0.5978	110	108.7775	128.5532	29.1063	34.3978	238.2820	281.6016	67.6095	79.9009
17	6.9728	51.83	3.6137	80	95.3506	664.8613	11.6605	81.3067	230.6259	1608.1088	36.6721	255.7078
18	2.6885	26.27	0.7062	80	48.3283	129.9306	5.9101	15.8893	116.8923	314.2649	18.5872	49.9717
19	1.9848	27.61	0.5479	70	48.2186	95.7044	4.5421	9.0152	119.8353	237.8491	14.9946	29.7613
20	0.6325	60.75	0.3842	70	106.1001	67.1083	9.9944	6.3215	263.6849	166.7807	32.9941	20.8688
21	1.6321	56.3	0.9189	70	98.3381	160.4977	9.2633	15.1186	244.3947	398.8766	30.5804	49.9103
22	1.3356	64.21	0.8576	70	112.1555	149.7949	10.5648	14.1104	278.7343	372.2775	34.8772	46.5820
23	0.5251	32.68	0.1716	70	57.0788	29.9721	5.3767	2.8233	141.8550	74.4880	17.7499	9.3204
24	1.2284	55.98	0.6877	40	83.6596	102.7675	3.6017	4.4243	217.3765	267.0254	10.3776	12.7479
25	3.9688 + 0.4410	57.13	2.2675 + 0.2519	80;170	111.3847	491.1845	33.0695	145.8302	257.7594	1136.6674	54.6927	241.1842
26	5.4565 +	71.58	3.9508+	70:80	147.9426	949.7028	13.9359	89.4606	367.6739	2360.2461	46.0060	295.3309
	0.9629		0.6893									
27	0.2981	49.47	0.1475	80	91.0096	27.1299	11.1296	3.3177	220.1261	65.6196	35.0026	10.4342
28	0.8056	36.39	0.2932	80	66.9547	53.9387	8.1879	6.5962	161.9443	130.4623	25.7510	20.7450
29	1.3712	39.04	0.5353	80	71.8306	98.4942	8.7842	12.0449	173.7377	238.2292	27.6263	37.8812
30	0.5425	61.96	0.3362	80	114.0023	61.8462	13.9414	7.5632	275.7389	149.5884	43.8456	23.7862
31	5.9345	14.12	0.8381	40	21.1028	125.2347	0.9085	5.3915	54.8324	325.4029	2.6177	15.5348
0			1.43396 +									
32	10.932	59.55	1.43396 + 1.43396	120;130;170	494.5494	1088.2747	6708.67	806.8091	67/1771	210/.3900	81.42/8	0107.666
33	0.3026	14.15	0.0428	120	32.0606	9.7015	11.1370	3.3700	67.6794	20.4797	22.5243	6.8158
34	0.3249	44.45	0.1444	120	100.6998	32.7173	34.9806	11.3652	212.5755	69.0658	70.7472	22.9857
35	3.8284	24.12	0.9236	120	54.6460	209.2068	18.9826	72.6732	115.3568	441.6320	38.3918	146.9793
36	1.5991	16.20	0.12805 + 0.12805	110;160	39.5587	63.2584	26.6484	42.6135	77.9089	124.5842	33.4244	53.4490
37	3.6188+ 0.4021	53.33	2.0370+ 0.1072	110;160	116.3776	467.9428	36.4869	146.7104	252.0188	1013.3424	75.2751	302.6737
38	16.7253	36.47	6.0991	120	82.6045	1381.5859	28.6947	479.9286	174.3767	2916.5035	58.0342	970.6405

97

																					1																			
Large timber (m ³) in the total area	1275.5640	341.9762	409.0503	313.6774	108.6373	330.5409	159.9321	57.8364	355.4325	117.9266	121.4801	492.7266	1387.9937	115.1384	339.4273	398.1838	10.2725	11.1827	136.7521	328.2185	144.9250	245.7997	419.2293	268.8463	161.2537	235.8665	333.5149	379.0754	406.0825	361.3611	327.5952	73.2752	284.9849	117.9616	205.6337	2401 044	1740.1741		334.1844	18 427.6614
Large timber (m³/1ha)	69.5350	64.6616	43.9555	92.228	66.4164	98.2612	79.5089	16.9797	40.8980	107.1573	52.8657	68.1389	79.0505	73.3459	103.1882	53.8807	60.8197	40.0384	47.9546	73.2761	24.2873	120.7979	172.2884	167.1514	51.3857	51.4936	63.6466	60.9455	49.2185	45.4228	68.1567	44.8578	41.7976	30.5386	98.9575	0213 211	0/10./11		28.7332	
Total biomass (m ³) in the total area	3832.7135	1027.5430	1229.0820	942.5130	326.4247	993.1831	480.5514	173.7824	708.1851	208.5637	365.0139	1323.8803	4891.8234	298.6329	880.3680	1032.7639	26.6435	29.0045	354.6921	1044.3483	375.8901	489.7461	835.2978	535.6656	321.2915	1483.3295	865.0331	2383.9495	1053.2505	937.2572	849.6793	190.0530	1004.3965	410.3239	398.3924	050 0163	CO10.6C0		697.8520	66 325.37702
Total biomass (m³/1ha)	208.9332	194.2902	132.0741	277.1037	199.5627	295.2475	238.9020	51.0194	81.4876	189.5172	158.8467	183.0789	278.6046	190.2363	267.6378	139.7496	157.7474	103.8472	124.3791	233.1551	62.9937	240.6851	343.2777	333.0425	102.3841	323.8357	165.0795	383.2777	127.6574	117.8124	176.7771	116.3471	147.3111	106.2272	191.7191	77E 6200	0000.077		60.0013	
Large timber (t) in the total area	630.6966	169.0885	202.2530	155.0963	53.7152	163.4344	79.0777	28.5969	287.0693	114.3976	60.0652	282.6778	597.5395	66.2944	195.4355	229.2664	5.9146	6.4388	78.7391	175.5124	83.4450	198.5231	338.5956	217.1369	130.2385	74.9978	192.0313	120.5335	233.8143	208.0646	188.6229	42.1904	122.6877	52.8570	213.4345	AEE 1010	0161.004		340.8798	9 891.8493
Large timber (t/1ha)	34.3812	31.9716	21.7336	45.5991	32.8392	48.5848	39.3128	8.3956	33.0317	103.9505	26.1392	39.0914	34.0317	42.2311	59.4137	31.0234	35.0188	23.0533	27.6113	39.1838	13.9841	97.5639	139.1508	135.0018	41.5023	16.3732	36.6465	19.3786	28.3390	26.1535	39.2433	25.8282	17.9941	13.6839	102.7115	110 4641	1707.011		29.3088	
Total biomass in the total area (t)	1815.6065	486.7605	582.2322	446.4807	154.6316	470.4838	227.6435	82.3230	377.6900	115.9350	172.9118	645.8055	2233.1543	147.0034	433.3652	508.3828	13.1154	14.2776	174.5988	488.1910	185.0336	261.1919	445.4819	285.6817	171.3515	613.2721	425.8165	985.6271	518.4674	461.3691	418.2585	93.5544	458.5146	187.8595	214.6066	CO82 121	10007		367.9896	30 170.8433
Total biomass (t/1ha)	98.9744	92.0378	62.5652	131.2676	94.5354	139.8626	113.1710	24.1685	43.4591	105.3476	75.2477	89.3082	127.1851	93.6446	131.7459	68.7924	77.6518	51.1192	61.2262	108.9906	31.0089	128.3624	183.0772	177.6185	54.6036	133.8876	81.2611	158.4635	62.8399	57.9937	87.0193	57.2724	67.2486	48.6342	103.2755		121.7441		31.6397	
Age	120	120	120	120	120	120	120	120	150	160	120	50;130	110	130	130	130	130	130	130	80;130	130	150	150	150	150	80	130	80	130	130	130	130	110	110;170	170;110	011.041.071	1/0,140,110		40.140.170	
Reduced dwarf pine area (ha)	8.0151	2.1488	2.5703	1.9710	0.6826	2.0770	1.0049	0.3634	1.4265	0.4157	0.7633	2.6157 + 0.1377	10.3846	0.6161	1.8162	2.1306	0.0550	0.0598	0.7317	0.7383 + 1.4767	0.7755	0.9865	1.6826	1.079	0.6472	3.3333	1.7845	5.3572	2.1728	1.9335	1.7529	0.3921	2.1322	0.8617 + 0.0087	0.5240 + 0.2821	1.0414+	0.2603	0.2918 +	0.4378 + 0.7296	
Cover (%)	43.69	40.63	27.62	57.95	41.73	61.74	49.96	10.67	16.41	37.77	33.22	38.08	59.14	39.25	55.21	28.83	32.54	21.42	25.66	49.45	13.00	48.48	69.15	67.09	20.62	72.77	34.06	86.13	26.34	24.30	36.47	24.00	31.27	22.53	38.79	70 00	00.04		12.55	
Stand area (ha)	18.3442	5.2887	9.3060	3.4013	1.6357	3.3639	2.0115	3.4062	8.6907	1.1005	2.2979	6.8696 + 0.3616	17.5583	1.5698	3.2894	7.3901	0.1689	0.2793	2.8517	2.4636+ 2.0156	5.9671	2.0348	2.4333	1.6084	3.1381	4.5805	5.2401	6.2199	8.2506	7.9555	4.8065	1.6335	6.8182	2.8970 + 0.9657	0.9351 + 1.1429	1.9053+	0.7621	1.1631 +	5.8153 + 4.6522	360.4923
Segment number	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	99	67	68	69	70	71	72	73	Υ.C.	+		75	Total

98

Zuzana Špinlerová

consisting of complicated and tenacious polycormons of the dwarf pine, is comparable to the large timber of a mature spruce stand that is ready to be felled. For example, Corona et al. (2011) mention that in the Czech Republic and other European countries the greatest per-ha deadwood levels are observed in mountain regions. This cannot be explained solely in terms of favorable ecological growing conditions; rather, it is likely linked to the poor accessibility and thus low intensity of forest harvesting. The dwarf pine cutting in these conditions can therefore be problematic due to the complexity of handling and disposal of such quantities of biomass (poor availability of human resources, financial demands, far availability of funds and also legislative context).

Corona et al. (2011) point out that in order to facilitate future research should serve large-scale forest inventories, such as National Forest Inventories. This should expand from traditional variables related to wood and timber production to the assessment of the composition, structure and function of forest ecosystems, and must provide a better understanding of the roles of the components of biological diversity in the provision of multiple forest ecosystem functions. It must result in well-developed partnership among ecologists, nature conservationists, statisticians, resource managers and policymakers (Lindenmayer et al. 2008; Gibbons et al. 2008). Partnerships and compromise among all entities dealing with management of dwarf pine in Hrubý Jeseník Mts. (the Forests of the Czech Republic, State Enterprise, the Administration of the Protected Landscape Area Jeseníky, entities conducting its monitoring and research) in this case are very important.

Conclusion

Dwarf pines planted on non-indigenous mountainous sites are currently a frequent topic of professional discussions and the summits of the Hrubý Jeseník Mts. in the Czech Republic are no exception. In response to various proposals for dwarf pine reduction, we estimated the amount of aboveground biomass that is located above the timberline in the mountains.

The main result is a methodology for dwarf pine biomass determination that can be used for acquisition and addition of further data, also new trend curves expressing the increasing biomass in relation to age and the creation of equations that could be used to roughly estimate the biomass of all dwarf pine stands, including stands of different age classes and canopy levels on mentioned sites above the timberline. The equations for biomass calculations could also be applied to other mountain ranges where artificially planted dwarf pines of the same seed origin or the same morphological appearance as those existing in the Hrubý Jeseník Mts. are found.

Acknowledgments

This research was funded by the GS LČR (Effect of Dwarf Pine stands removing on bellow situated stands by upper timber line in Hrubý Jeseník Mts.). Many thanks to Mrs V. Filková for translating of text into English and American Journal Experts for text editing. Also thanks to students of Summer School of Ecology for help with data collecting.

References

- Archibold O.W. 1995. Ecology of world vegetation. Chapman and Hall, London.
- Bitterli P. 1987. Jahrringe in Logföhren (*Pinus mugo* Turra ssp. *mugo*) als Ausdruck lokaler mechanischer Faktoren. Dendrochronologia 5: 79–95.
- Bliss L.C. 1962. Net Primary Production of Tundra Ecosystems. In: Die Stoffproduktion der Pflanzendecke. Vorträge und Diskussionsergebnisse des internationalen ökologischen Symposium in Stuttgart-Hohenheim vom 4.–7. Mai 1960. Lieth H. (ed.). Gustav Fischer Verlag, Stuttgart, pp. 35–46.
- Carmel Y., Kadmon R. 1998. Computerized Classification of Mediterranean Vegetation Using Panchromatic Aerial Photographs. Journal of Vegetation Science 9: 445–454.
- Corona P. 1987a. Dendrometric and dendrochronological studies on dwarf mountain pine (*Pinus mugo*). Dendrochronologia 5: 97–103.
- Corona P. 1987b. Indagini dendrometriche sul pino montano (*Pinus mugo* Turra) del Trentino orientale. Dendronatura 8: 48–55.
- Corona P., Chirichi G., McRoberts R.E., Winter S., Barbati A. 2011. Contribution of large-scale forest inventories to biodiversity assessment and monitoring. Forest Ecology and Management 262: 2061–2069.
- Fišerová D. 1991. Map of actual vegetation of western Krkonoše. Report, manuscript on file. Agency for Nature Conservation and Landscape Protection of the Czech Republic, Prague.
- Gibbons P, Zammit Ch., Younggentob K., Possingham H.P., Lindenmayer D.B., Bekessy S., Burgman M., Colyvan M., Considine M., Felton A., Hobbs R.J., Hurley K., McAlpine C., McCarthy M.A., Moore J., Robinson D., Salt D., Wintle B. 2008. Some practical suggestions for improving engagement between researchers policy-makers in natural resource management. Ecological Management & Restoration 9: 182–186.

- Halounová L. 2004. The automatic classification of b&w aerial photos. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34: 1–6.
- Heikkinen O. 1980. Mountain pine radial growth and the forest limit zone in Gadmental, the Swiss Alps. Fennia – International Journal of Geography 158: 1–14.
- Hohl R., Schweingruber F.H., Schiesser H.-H. 2002. Reconstruction of severe hailstorm occurrence with tree rings: a case study in central Switzerland. Tree-Ring Research 58: 11–22.
- Holubičková B. 1980. Autochtonní a introdukovaná *P. mugo* Turra v sudetských pohořích. Opera Corcontica 17: 15–29.
- Hošek J., Banaš M., Zeidler M., Kuras T. 2005. Dílčí zpráva z projektu VaV SM/6/70/05 Vliv výsadeb borovice kleče (*Pinus mugo*) na biotopovou a druhovou diverzitu arkto-alpinské tundry ve Východních Sudetech (CHKO Jeseníky, NPR Králický Sněžník). Návrh managementu těchto porostů. MŽP ČR.
- Kadmon R., Harari-Kremer R. 1999. Studying longterm vegetation dynamics using digital processing of historical aerial photographs. Remote Sensing of Environment 68: 164–176.
- Kolischuk V.G., Berko J.M. 1967. Growth of *Pinus* spp. and fluctuations of climate in the Ukrainian Carpathians. Ukrains'kii Botanichnii Zhurnal 24: 39–47.
- Kolischuk V.G. 1969. Methods of studying fluctuations in increment of prostrate dwarf forms using *Pinus mugo* as an example. Ukrains'kii Botanicheskii Zhurnal 52: 852–859.
- Kubíček F. 2001. Biomass of the herb and moss layer in forest ecosystems of the Tatra National Park. Ekológia-Bratislava 20: 185–191.
- Kubíček F., Šomšák L., Šimonovič V., Majzlanová E., Háberová, I., Rybárska V. 1983. Influence of tourism on dwarf pine (*Pinus mugo*) communities in the Vysoké Tatry Mountains . Folia Geobotanica 18: 363–387.
- Kyncl T., Wild J. 2004. Použití letokruhové analýzy pro datování velkoplošného odumírání kleče. In: Geoekologické problémy Krkonoš. Sborník mezinárodní vědecké konference. Štursa J., Wild J. (eds.). Opera Corcontica 41: 434–440.
- Lindenmayer D., Hobbs R.J., Montague-Drake R., Alexandra J., Bennett A., Burgman M., Cale P., Calhoun A., Cramer V., Cullen P., Driscoll D., Fahrig L., Fischer J., Franklin J., Haila Y., Hunter M., Gibbons P., Lake S., Luck G., MacGregor Ch., McIntyre S., Mac Nally R., Manning A., Miller J., Mooney H., Noss R., Possingham H., Saunders D., Schmiegelow F., Scott M., Simberloff D., Sisk T., Tabor G., Walker B., Wiens J., Woinarski J., Zavaleta E. 2008. A checklist for ecological man-

agement of landscapes for conservation. Ecology Letters 11: 78–91.

- Lokvenc T. 2003. Antropogenní ovlivnění přírody českých krkonošských jam. Opera Corcontica 40: 287–300.
- Lokvenc T., Vacek S. 1991. Vývoj dřevin vysazených na holině a pod porostem rozpadávajícím se vlivem imisí. Lesnictví. 37: 435–456.
- Malinovskij K.A. 1984. Digressija biogeocenoticheskogo pokrova na kontakte lesnogo i subal'pijskogo pojasov v chernogore. Haukoba Dumka, Kiev.
- Müllerová J. 2005. Use of digital aerial photography for sub-alpine vegetation mapping: A case study from the Krkonoše Mts., Czech Republic. Plant Ecology 175: 259–272.
- Packová P., Maděra P. 2004. The natural development of highly productive white willow stands (*Salix alba* L.) in the Dyje-Morava alluvium. In: The Economics and Management of High Productivity Plantations. Alvarez J.G. (ed.). University of Santiago de Compostela, Lugo, Spain.
- Palombo C., Chirici G., Marchetti M., Tognetti R. 2013. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosystems 147: 1–11.
- Palombo C., Battipaglia G., Cherubini P., Chirici G., Garfi V., Lasserre B., Lombardi F., Marchetti M., Tognetti R. 2014. Warming-related growth responses at the southern limit distribution of mountain pine (*Pinus mugo* Turra subsp. *mugo*). Journal of Vegetation Science 25: 571–583.
- Popovic M. 1976. Growth of the mountain pine (*Pinus mugo*, Turra.) in Yugoslavia. Journal of Biogeography 3: 261–267.
- Potočka J. 1999. The dynamics of raised bog vegetation in the Izera mountains. Biology Bulletin of the Russian Academy of Science 26: 540–546.
- Šenfeldr M., Maděra P., Buček A., Roštínský P., Špinlerová Z., Culek M., Friedl M., Štykar J., Vavříček D., Pecháček J., Tippner A., Sedláček A. 2012. Kleč v horské krajině Hrubého Jeseníku. Geobiocenologické spisy. Akademické nakladatelství CERM.
- Šenfeldr M., Maděra P., Buček A., Roštínský P., Špinlerová Z., Culek M., Friedl M., Vavříček D., Tippner A. 2013. Atlas of expansion and categorization of dwarf pine stands above the forest line in the Hrubý Jeseník Mts. Lesnická Práce, Kostelec nad Černými lesy.
- Simon J., Drápela K. 1987. Growth of dwarf pine (*Pinus mugo* Turra) in the Beskydy and Jeseníky Mountains. Acta Universitatis Agriculturae (Brno)C 56: 141–144.

- Souček J., Lokvenc T., Vacek S., Stursa J. 2001. Site and stand conditions of dwarf pine stands. Opera Corcontica 38: 43–61.
- Spinlerová Z., Martinková M. 2006. Growth of mountain pine (*Pinus mugo* Turra) in relation to the use of other tree species. Journal of Forest Science 52: 217–225.
- Špinlerová Z., Martinková M. 2009. Zhodnocení a výběr metod studia agregátu *Pinus mugo* a příspěvek k objasnění jeho role v imisních horských oblastech. Folia Forestalia Bohemica 7: 88.
- Wild J. 2006a. Krummholz and grassland in the summit plateaux of the Krkonoše Mountains: their interactions and long-term dynamics. Doktorská práce, Ústav životního prostředí Přírodovědecké fakulty UK. Praha.
- Wild J. 2006b. Vývoj plošného rozšíření klečových porostů – analýza leteckých snímků. In: Dílčí zpráva z projektu VaV SM/6/70/05 Vliv výsadeb borovice kleče (*Pinus mugo*) na biotopovou a druhovou diverzitu arkto-alpinské tundry ve Východních Sudetech (CHKO Jeseníky, NPR Králický Sněžník). Návrh managementu těchto porostů. Hošek J. (ed.). MŽP ČR, pp. 47–58.
- Wild J., Treml V., Potůčková M., Kopalová I. 2007. Vývoj plošného rozšíření klečových porostů – analýza historických leteckých snímků. In: Dílčí zpráva z projektu VaV SM/6/70/05 Vliv výsadeb borovice kleče (*Pinus mugo*) na biotopovou a druhovou diverzitu arkto-alpinské tundry ve Východních Sudetech (CHKO Jeseníky, NPR Králický Sněžník). Návrh managementu těchto porostů. Hošek J. (ed.). MŽP ČR, pp. 88–109.