PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 62 | 2 |

Tytuł artykułu

Statistical analysis of the associations between phenolic monoterpenes and molecular markers, AFLPs and SAMPLs in the spice plant Oregano

Treść / Zawartość

Warianty tytułu

PL
Analiza statysyyczna związku monoterpenów fenolowych i markerów molekularnych AFLP I SAMPL Lebiodki pospolitej (Oregano)

Języki publikacji

EN

Abstrakty

EN
Introduction: Molecular markers are the examples of the contribution of genome technology to medicinal plant breeding through marker-assisted selection (MAS) for pharmaceutical quality. Objective: Forty-two accessions of Origanum vulgare L. originating from Europe were evaluated to detect genomic and chemotypic polymorphisms and to discover possible associations between them. Methods: A total of 477 molecular polymorphisms including 214 AFLP (Amplified Fragment Length Polymorphism) and 263 SAMPL (Selectively Amplified Microsatellite Polymorphic Loci) were used for genotyping. Components in the essential oils were identified and quantified by gas chromatography (GC) and two major compounds (two economically important monoterpenes: carvacrol and thymol) were investigated. Results: Based on results, a relatively high correlation between chemotypic patterns and genetic markers was identified. Associations between traits of interest for essential oils (carvacrol and thymol content) and genetic markers were tested using five statistical methods including three General Linear Model (GLM) and two unified Mixed Linear Model (MLM) approaches. Significant associations were found for 3 AFLP and 20 SAMPL with three key traits including essential oil yield, carvacrol and thymol content. Conclusion: These associations can constitute a useful starting point for marker-assisted selection. Therefore, the results provide the basis for molecular breeding of O. vulgare for pharmaceutical purposes.
PL
Wstęp: Markery molekularne stanowią przykład udziału technologii genomowej w hodowli roślin leczniczych za pomocą selekcji typu MAS, prowadzonej na potrzeby przemysłu farmaceutycznego. Cel: Zbadano 42 rośliny Origanum vulgare L. pochodzące z Europy w celu wykrycia zmienności genomu i chemotypu oraz określenia potencjalnych zależności między nimi. Metody: Oceniono 477 polimorfizmów molekularnych stosując technikę AFLP (Amplified Fragment Length Polymorphism) dla 214 polimorfizmów i metodę SAMPL (Selectively Amplified Microsatellite Polymorphic Loci) dla 263 polimorfizmów. Za pomocą chromatografii gazowej (GC) zidentyfikowano i określono składniki olejków eterycznych oraz zbadano ich dwa główne komponenty, monoterpeny o znaczeniu ekonomicznym: karwakrol i tymol). Wyniki: Na podstawie uzyskanych wyników stwierdzono stosunkowo wysoką korelację pomiędzy wzorem chemotypowym a markerami genetycznymi. Związek między badanymi cechami olejków eterycznych (zawartością karwakrolu i tymolu) a markerami genetycznymi oceniono za pomocą pięciu metod statystycznych stosując trzy ogólne modele liniowe (General Linear Model – GLM) i dwa liniowe modele mieszane (Mixed Linear Model – MLM). Wykazano istotne zależności między markerami genetycznymi (3 AFLP i 20 SAMPL) a trzema kluczowymi cechami surowca: zawartością olejku eterycznego, karwakrolu i tymolu. Wnioski: Stwierdzone zależności mogą wskazywać na przydatność badań molekularnych w hodowli roślin. Uzyskane wyniki stanowią podstawę dla zastosowania markerów molekularnych w selekcji O. vulgare do celów farmaceutycznych.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

62

Numer

2

Opis fizyczny

p.42-56,fig.,ref.

Twórcy

autor
  • Department of Horticultural Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
autor
  • Department of Horticultural Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Institute of Agronomy and Plant Breeding, Biomedical Research Centre Seltersberg (BFS), Justus Liebig University Giessen, Schubert-Str.81, D-35392 Giessen, Germany

Bibliografia

  • 1. Crocoll C, Asbach J, Novak J, Gershenzon J, Degenhardt J. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol Biol 2010; 73 (6):587-603. doi: http://dx.doi.org/10. 1007/ s11103-010-9636-1
  • 2. Skoula M, Harborne J.B. The taxonomy and chemistry of Origanum. In: Oregano, The genera Origanum and Lippia. Taylor & Francis Publication 2002; 65-108.
  • 3. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – a review. Food Chem Toxicol 2008; 46(2):446-75. doi: http://dx.doi.org/10.1016/j.fct.2007.09.106
  • 4. D’Antuono LF, Galletti GC, Bocchini P. Variability of essential oil content and composition of Origanum vulgare L. populations from a North Mediterranean area (Liguria region, Northern Italy). Ann Bot 2000; 86 (3):471-8. doi: http://dx.doi.org/10.1006/anbo.2000.1205
  • 5. Skoula M, Gotsiou P, Naxakis G, Johnson CB. A chemosystematic investigation on the mono-and sesquiterpenoids in the genus Origanum (Labiatae). Phytochem 1999; 52(4):649-57. doi: http://dx.doi.org/10.1016/S0031-9422(99)00268-X
  • 6. Scheerer H. Chromosomenzahlen aus der schleswig-holsteinischen Flora. II. Planta. 1940; 30(5):716-25. doi: http://dx.doi.org/10.1007/BF01917180
  • 7. Novak J, Lukas B, Bolzer K, Grausgruber-Gröger S, Degenhardt J. Identification and characterization of simple sequence repeat markers from a glandular Origanum vulgare expressed sequence tag. Mol Ecol Resour 2008; 8(3):599-601. doi: http://dx.doi.org/10.1111/j.1471-8286.2007.02059.x
  • 8. Azizi A, Wagner C, Honermeier B, Friedt W. Intraspecific diversity and relationship between subspecies of Origanum vulgare revealed by comparative AFLP and SAMPL marker analysis. Plant Syst Evol 2009; 281(1-4):151-60. doi: http://dx.doi.org/10.1007/s00606-009-0197-1
  • 9. Vines G. Herbal harvests with a future: towards sustainable sources for medicinal plants. Plantlife International 2004:3.
  • 10. Canter PH, Thomas H, Ernst E. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 2005; 23(4):180-5. doi: http://dx.doi.org/10.1016/j.tibtech.2005.02.002
  • 11. Bernath J, (ed.). Strategies and recent achievements in selection of medicinal and aromatic plants. International Conference on Medicinal and Aromatic Plants Possibilities and Limitations of Medicinal and Aromatic Plant 2001:576. doi: http://dx.doi.org/10.17660/ActaHortic.2002.576.19
  • 12. Moose SP, Mumm RH. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 2008; 147(3):969-977. doi: http://dx.doi.org/ 10. 1104/ pp. 108. 118232
  • 13. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 2005; 57(4):461-85. doi: http://dx.doi.org/10.1007/s11103-005-0257-z
  • 14. Li Y, Li Y, Wu S, Han K, Wang Z, Hou W et al. Estimation of multilocus linkage disequilibria in diploid populations with dominant markers. Genetics 2007; 176(3):1811-21. doi: http://dx.doi.org/10.1534/genetics.106.068890
  • 15. Achleitner A, Tinker NA, Zechner E, Buerstmayr H. Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits. Theor Appl Genet 2008; 117(7):1041-53. doi: http://dx.doi.org/10.1007/s00122-008-0843-y
  • 16. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007; 7(4):574-8. doi: http://dx.doi.org/10.1111/.1471-8286.2007.01758.x
  • 17. Hardy OJ. Estimation of pairwise relatedness between individuals and characterization of isolation-bydistance processes using dominant genetic markers. Mol Ecol. 2003; 12(6):1577-88. doi: http://dx.doi.org/10.1046/j.1365-294.x
  • 18. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 2006; 38(2):203-8. doi: http://dx.doi.org/10.1038/ng1702
  • 19. Azizi A, Hadian J, Gholami M, Friedt W, Honermeier B. Correlations between genetic, morphological, and chemical diversities in a germplasm collection of the medicinal plant Origanum vulgare L. Chem Biodivers 2012; 9(12):2784-801. doi: http://dx.doi.org/10.1002/cbdv.201200125
  • 20. Azizi A, Yan F, Honermeier B. Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and nitrogen supply. Ind Crop Prod 2009; 29(2):554-61. doi: http://dx.doi.org/10.1016/j.indcrop.2008.11.001
  • 21. Adams RP. Systematics of the one seeded Juniperus of the eastern hemisphere based on leaf essential oils and random amplified polymorphic DNAs (RAPDs). Biochem Syst Ecol 2000; 28(6):529-43. doi: http://dx.doi.org/10.1016/S0305-1978(99)00096-4
  • 22. Nan P, Peng S, Shi S, Ren H, Yang J, Zhong Y. Interpopulation congruence in Chinese Primula ovalifolia revealed by chemical and molecular markers using essential oils and ISSRs. Zeitschrift für Naturforschung C. 2003; 58(1-2):57-61. doi: http://dx.doi.org/10.1515/znc-2003-1-210
  • 23. Ardalani H, Eradatmand Asli D, Moradi P. Physiological and morphological response of lemon balm (Melissa officinalis L.) to prime application of salicylic hydroxamic acid. Electr J Biol 2014; 10(3): 93-97.
  • 24. Abdossi V, Ghahremani A, Hadipanah A, Ardalani H, Aghaee K. Quantitative and qualitative responses in chemical composition of three ecotypes of fennel (Foeniculum vulgare Mill.) cultivated in Iran climatic conditions. J Biodivers Environ Sci 2015; 6(3):401-407.
  • 25. Vogel JM, Scolnik PA. Direct amplification from microsatellites: detection of simple sequence repeatbased polymorphisms without cloning. DNA Markers Protocols, Applications, and Overviews, Wiley 1997:133-150.
  • 26. Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987; 19:11-5.
  • 27. Singh A, Chaudhury A, Srivastava P, Lakshmikumaran M. Comparison of AFLP and SAMPL markers for assessment of intra-population genetic variation in Azadirachta indica A. Juss Plant Science 2002; 162(1):17-25. doi: http://dx.doi.org/10.1016/S0168-9452(01)00503-9
  • 28. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 2007; 23(19):2633-5. doi: http://dx.doi.org/10.1093/bioinformatics/btm308
  • 29. Sarwat M, Das S, Srivastava P. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep 2008; 27(3):519-28. doi: http://dx.doi.org/10.1007/s00299-007-0478-5

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cc3f3e76-8a85-4f97-856a-370ca80d5be8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.