PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |

Tytuł artykułu

Spatial variability of CO2, CH4, and N2O fluxes during midsummer in the steppe of Northern China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Spatial variability is a major source of uncertainty in estimating the fluxes of greenhouse gases between steppe and atmosphere. The fluxes of CO₂, CH₄, and N₂O were carried out between 08:00 and 10:00 h. of the following day during the midsummer period from a transect (area: 5.25×10⁶ ha) in the semiarid steppe of northern China, using the dark static chamber technique and gas chromatography. Two land uses were chosen for this study: soils with plant covers and bare soils. Daily average GHG fluxes from the steppe transect were: 1.3×10⁵ t C for CO₂, -66.3 t C for CH₄, and 1.1 t N for N₂O. The emission of CO₂ from soils with plant cover was significantly higher (P < 0.05) than that from the corresponding bare soils. The canopy effect, however, was observed for neither CH₄ (P = 0.058) nor N₂O (P = 0.772). Air temperature and relative humidity were the major factors affecting the diurnal variation in site-based CO₂ flux (P < 0.05), while soil pH controlled its spatial variation (P < 0.05). The spatial uptake of CH₄ correlated negatively with soil total N (TN) content (P < 0.05), while the flux of N₂O significantly increased with soil organic carbon (P = 0.031) and TN (P = 0.022), indicating that soil organic matter is an important factor determining the N₂O flux in the steppe of northern China.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.319-320,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
  • Landcare Research Private Bag 11052, Palmerston North 4442, New Zealand
autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
  • Graduate University of Chinese Academy of Sciences, 100049, Beijing, PR China
autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
  • Graduate University of Chinese Academy of Sciences, 100049, Beijing, PR China
autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
  • Graduate University of Chinese Academy of Sciences, 100049, Beijing, PR China

Bibliografia

  • 1. BALEZENTIENE L., BLEIZGYS R. Short-term inventory of GHG fluxes in semi-natural and anthropogenized grassland. Pol. J. Environ. Stud. 20, 255, 2011.
  • 2. BALEZENTIENE L., UZUPIS A. Multi-criteria optimization for mitigation model of greenhouse gas emissions from abandoned grassland. J. Food Agr. Environ. 10, 859, 2012.
  • 3. AMBUS P., CHRISTENSEN S. Measurement of N₂O emission from a fertilized grassland: an analysis of spatial variability. J. Geophys. Res. 99, 16549, 1994.
  • 4. VAN DEN POL-VAN DASSELAAR A., CORRE W. J., PRIEME A., KLEMEDTSSON A. K., WESLIEN, P., STEIN A., KLEMEDTSSON L., OENEMA O. Spatial variability of methane, nitrous oxide, and carbon dioxide emissions from drained grasslands. Soil Sci. Soc. Am. J. 62, 810, 1998.
  • 5. YAO Z. S., WOLF B., CHEN W. W., BUTTERBACHBAHL K., BRUGGEMANN N., WIESMEIER M., DANNENMANN M., BLANK B., ZHENG X. H. Spatial variability of N₂O, CH₄ and CO₂ fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant Soil. 331, 341, 2010.
  • 6. KATO T., HIROTA M., TANG Y. H., WADA E. Spatial variability of CH₄ and N₂O fluxes in alpine ecosystems on the Qinghai-Tibetan Plateau. Atmos. Environ. 45, 5632, 2011.
  • 7. TIESZEN L. L., DETLING J. Productivity of grassland and tundra. In: LANGE O. L. NOBEL P. S., OSMOND C. G., ZIEGLER H. (Eds.), Physiological Plant Ecology IV. Ecosystem Processes: Mineral Cycling, Productivity and Man’s Influence. Encyclopedia of Plant Physiology. Springer-Verlag, Berlin, 1983.
  • 8. ANDERSON J. M. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol. Appl. 1, 326, 1991.
  • 9. ESWARAN H., VANDENBERG E., REICH P. Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57, 192, 1993.
  • 10. CHEN Z. Z., WANG S. P. Typical grassland ecosystem in China. Science Press, Beijing, 2000 [In Chinese].
  • 11. ZHAO W. L., QI J. G., SU G. J., LI F. M. Spatial patterns of top soil carbon sensitivity to climate variables in northern Chinese grasslands. Acta Agr. Scand. B-S P. 62, 720, 2012.
  • 12. STOYAN H., DE-POLLI H., BOHM S., ROBERTSON G.P., PAUL E.A. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil. 222, 203, 2000.
  • 13. FOLORUNSO O.A., ROLSTON D.E. Spatial variability of field-measured denitrification gas fluxes. Soil Sci. Soc. Am. J. 48, 1214, 1984.
  • 14. WANG Y. S., XUE M., ZHENG X. H., JI B. M., DU R., WANG Y. F. Effects of environmental factors on N₂O emission from and CH₄ uptake by the typical grasslands in the Inner Mongolia. Chemosphere. 58, 205, 2005.
  • 15. LIU X. R., DONG Y. S., QI Y. C., LI S. G. N₂O fluxes from the native and grazed semi-arid steppes and their driving factors in Inner Mongolia, China. Nutr. Cycl. Agroecos. 86, 231, 2010.
  • 16. DU R., LU D., WANG G. Diurnal, seasonal, and interannual variations of N₂O fluxes from native semiarid grassland soils of inner Mongolia. Soil Biol. Biochem. 38, 3474, 2006.
  • 17. WANG Y. S., WANG Y. H. Quick measurement of CH₄, CO₂ and N₂O emissions from a short-plant ecosystem. Adv. Atmos. Sci. 20, 842, 2003.
  • 18. FORSTER P., RAMASWAMY V., ARAXO P., BERNTSEN T., BETTS R. A., FAHEY D. W., HAYWOOD J., LEAN J., LOWE D. C., MYHRE G., NGANGA J., PRINN R., RAGA G., SCHULZE M., VAN DORLAND R. Changes in atmospheric constituents and in radiative forcing. In: SOLOMON S., QIN D., MANNING M., CHEN Z., MARQUIS M., AVERYT K.B., TIGNOR M. MILLER H.L. (Eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2007.
  • 19. YAN C. Z., WANG Y. M., FENG Y. S., WANG J. H., WU W. Macro-scale study on grassland cover of Ningxia region by remote sensing in the digital way. J. Desert Res. 20, 298, 2000 [In Chinese].
  • 20. SU Y. Z., LI Y. L., ZHAO H. L. Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, Inner Mongolia, northern China. Biogeochemistry. 79, 297, 2006.
  • 21. FU C. B., JIANG Z. H., GUAN Z. Y., HE J. H., XU Z. F. Regional climate studies of China. Springer-Verlag Berlin Heidelberg, 2008.
  • 22. RAICH J. W., TUFEKCIOGLU A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry. 48, 71, 2000.
  • 23. STEER J., HARRIS J. A. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem. 32, 869, 2000.
  • 24. MARINIER M., GLATZEL S., MOORE T. R. The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO₂ and CH₄ at two restored peatlands, eastern Canada. Ecoscience. 11, 141, 2004.
  • 25. WANG G. C., DU R., KONG Q. X., LU D. R. Experimental study on soil respiration of temperate grassland in China. Chinese Sci. Bull. 49, 642, 2004.
  • 26. WANG W., GUO J. X., FENG J., OIKAWA T. Contribution of root respiration to total soil respiration in a Leymus chinensis (Trin.) Tzvel. grassland of northeast China. J. Integr. Plant Biol. 48, 409, 2006.
  • 27. SCHIMEL J. P. Plant transport and methane production as controls on methane flux from Arctic wet meadow tundra. Biogeochemistry. 28, 183, 1995.
  • 28. LAANBROEK H. J. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann. Bot. 105, 141, 2010.
  • 29. HAKATA M., TAKAHASHI M., ZUMFT W., SAKAMOTO A., MORIKAWA H. Conversion of the nitrate nitrogen and nitrogen dioxide to nitrous oxides in plants. Acta Biotechnol. 23, 249, 2003.
  • 30. MULLER C. Plants affect the in situ N₂O emissions of a temperate grassland ecosystem. J. Plant Nutr. Soil Sc. 166, 771, 2003.
  • 31. PIHLATIE M., AMBUS P., RINNE J., PILEGAARD K., VESALA T. Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New. Phytol. 168, 93, 2005.
  • 32. DU Y. G., CAO G. M., DENG Y. C., SUN G. C., CUI X. Y. Contribution of the vegetation layers in the nitrous oxide emission from Alpine Kobresia humilis SERG. meadow ecosystem on the Tibetan plateau. Pol. J. Ecol. 58, 115, 2010.
  • 33. YAN X., SHI S., DU L., XING G. Pathways of N₂O emission from rice paddy soil. Soil Biol. Biochem. 32, 437, 2000.
  • 34. HERNANDEZ M. E., MITSCH W. J. Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands. 26, 862, 2006.
  • 35. UCHIDA Y. The effects of substrate, temperature and soil fertility on respiration and N₂O production in pastoral soils. Ph thesis, Lincoln University, New Zealand, 2010.
  • 36. DONOSO L., SANTANA R., SANHUEZA E. Seasonal variation of N₂O fluxes at a tropical savannah site: soil consumption of N₂O during the dry season. Geophys. Res. Lett. 20, 1379, 1993.
  • 37. LI J., LEE X., YU Q., TONG X., QIN Z., MACDONALD B. Contributions of agricultural plants and soils to N₂O emission in a farmland. Biogeosciences. 8, 5505, 2011.
  • 38. LEE M. S., NAKANE K., NAKATSUBO T., MO W. H., KOIZUMI H. Effects of rainfall events on soil CO₂ flux in a cool temperate deciduous broad-leaved forest. Ecol. Res. 17, 401, 2002.
  • 39. LA SCALA JR N., SIMAS F. N. B., DE SA MENDONCA E., SOUZA J. V., PANOSSO A. R., SCHAEFER C. E. G. R. Spatial and temporal variability of soil C-CO₂ emissions and its relation with soil temperature in King George Island, Maritime Antarctica, 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia. Published on DVD, 2010.
  • 40. DONG Y. S., ZHANG S., QI Y. C., CHEN Z. Z., GENG Y. B. Fluxes of CO₂, N₂O and CH₄ from a typical temperate grassland in Inner Mongolia and its daily variation. Chinese Sci. Bull. 45, 1590, 2000.
  • 41. CABANEIRO A., FERNANDEZ I., PEREZ-VENTURA L., CARBALLAS T. Soil CO₂ emissions from Northern Andean Paramo ecosystems: Effects of fallow agriculture. Environ. Sci. Technol. 42, 1408, 2008.
  • 42. SETIA R., MARSCHNER P., BALDOCK J., CHITTLEBOROUGH D., VERMA V. Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biol. Biochem. 43, 667, 2011.
  • 43. ROSENKRANZ P., BRUGGEMANN N., PAPEN H., XU Z., HORVATH L., BUTTERBACH-BAHL K. Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. Plant Soil. 286, 301, 2006.
  • 44. SITAULA B. K., HANSEN S., SITAULA J. I. B., BAKKEN L. R. Methane oxidation potentials and fluxes in agricultural soil: Effects of fertilisation and soil compaction. Biogeochemistry. 48, 323, 2000.
  • 45. MOSIER A., SCHIMEL D., VALENTINE D., BRONSON K., PARTON W. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature. 350, 330, 1991.
  • 46. VINTHER F. P. Measured and simulated denitrification activity in a cropped sandy and loamy soil. Biol. Fert. Soils. 14, 43, 1992.
  • 47. PAPEN H., BUTTERBACH-BAHL K. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany – 1. N₂O emissions. J. Geophys. Res. 104, 18487, 1999

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cbdb6845-27bf-498e-a491-d24337929c81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.