PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 73 | 03 |

Tytuł artykułu

MicroRNA function in domestic animal physiology and diseases: a promising diagnostic tool for veterinary use

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
MicroRNAs (miRNAs) are small non-coding interfering RNA molecules capable of post-transcriptionally regulating gene expression through sequence-specific base pairing to messenger ribonucleic acid (mRNA). In recent years, hundreds of miRNAs have been identified in humans, various animals and plants. The action of miRNAs has been examined in several biological processes, including tissue morphogenesis, development, cell proliferation and differentiation, apoptosis, immunity, metabolism, and major signaling pathways. Changes in miRNA expression have also been analyzed in the context of various pathological conditions, including different kinds of inflammation, cancer, cardiovascular diseases, etc. Thanks to these investigations, several miRNAs have been identified as potential sensitive diagnostic markers that may be important in monitoring physiological and pathological processes. In human medicine, microarray and real-time PCR-based diagnostic test panels with selected disease-specific miRNAs are increasingly used to predict disease occurrence or progression. In animals, they are mainly used to diagnose canine mammary cancers and infectious diseases, as well as to monitor reproduction. Until now, only few miRNAs of domestic animals have been studied in detail. Moreover, the silencing of selected miRNAs, successfully used in human medicine in diseases related to miRNA over-expression, is also emerging as a promising tool for veterinary medicine and animal breeding. This review presents recent progress in miRNA biology in various domestic animals and shows the current state of knowledge concerning miRNAs and their potential role as a diagnostic factor in veterinary sciences.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

73

Numer

03

Opis fizyczny

p.156-165,fig.,ref.

Twórcy

  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Abelson J. F., Kwan K. Y., O’Roak B. J., Baek D. Y., Stillman A. A., Morgan T. M., Mathews C. A., Pauls D. L., Rasin M. R., Gunel M. et al.: Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 2005, 310, 317-320.
  • Ambros V., Bartel B., Bartel D. P., Burge C., Carrington J. C., Chen X. et al.: A uniform system for microRNA annotation. RNA 2003, 9, 277-279.
  • Barrey E., Bonnamy B., Barrey E. J., Mata X., Chaffaux S., Guerin G.: Muscular microRNA expressions in healthy and myopathic horses suffering from polysaccharide storage myopathy or recurrent exertional rhabdomyolysis. Equine Vet. J. 2010, 42, 303-310.
  • Bartel D. P.: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281-297.
  • Basyuk E., Suavet F., Doglio A., Bordonne R., Bertrand E.: Human let-7 stemloop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 2003, 31, 6593-6597.
  • Bhaskaran M., Mohan M.: MicroRNAs History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Vet. Pathol. Online 2014, 51, 759-774.
  • Boggs R. M., Wright Z. M., Stickney M. J., Porter W. W., Murphy K. E.: MicroRNA expression in canine mammary cancer. Mamm. Genome 2008, 19, 561-569. doi: 10.1007/s00335-008-9128-7.
  • Brennecke J., Stark A., Russell R. B., Cohen S. M.: Principles of microRNA-target recognition. PLoS Biol 2005, 3, e85. doi: 10.1371/journal.pbio.0030085.
  • Buechli M. E., Lamarre J., Koch T. G.: MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells. Stem Cells Dev. 2013, 22, 1288-1296.
  • Cai X., Lu S., Zhang Z., Gonzalez C. M., Damania B., Cullen B. R.: Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. 2005, 102, 5570.
  • Calin G. A, Croce C. M.: MicroRNA signatures in human cancers. Nat. Rev. 2006, 6, 857-866.
  • Cameron A., da Silveira J. C., Bouma G., Bruemmer J. E.: Evaluation of Exosomes Containing miRNA as an Indicator of Pregnancy Status in the Mare. J. Equine Vet. Sci. 2011, 31, 314-315.
  • Carrington J. C., Ambros V.: Role of microRNAs in plant and animal development. Science 2003, 301, 336-338.
  • Castro F. O., Sharbati S., Rodríguez-Alvarez L. L, Cox J. F., Hultschig C., Einspanier R.: MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos. Theriogenology 2010, 73, 71-85.
  • Chen J. F., Mandel E. M., Thomson J. M., Wu Q., Callis T. E., Hammond S. M., Conlon F. L., Wang D. Z.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006, 38, 228-233.
  • Donadeu F. X., Schauer S. N.: Differential miRNA expression between equine ovulatory and anovulatory follicles. Domest. Anim. Endocrinol. 2013, 45, 122-125.
  • Dunn W., Du Raine G., Reddi A. H.: Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum 2009, 60, 2333-2339.
  • Fenger J. M., Volinia S., Jalkanen A., Gulcin Ozer H., Sarver A. L., Subramanian S., Breen M., Modiano J., London Ch., Kisseberth W.: 10.1158/1538-7445. AM2012-184 Cancer Res. 2012, 72 (8 Supplement), 184.
  • Fleischhacker S. N., Bauersachs S., Wehner A., Hartmann K., Weber K.: Differential expression of circulating microRNAs in diabetic and healthy lean cats. Vet. J. 2013, 197, 688-693.
  • Govindaraju A., Uzun A., Robertson L., Atli M. O., Kaya A., Topper E., Crate E. A., Padbury J., Perkins A., Memili E.: Dynamics of microRNAs in bull spermatozoa. Reprod. Biol. Endocrinol. 2012, 14, 10, 82.
  • Grey F., Antoniewicz A., Allen E., Saugstad J., McShea A., Carrington J. C., Nelson J.: Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 2005, 79, 12095-12099.
  • Griffiths-Jones S.: The microRNA Registry. Nucleic Acids Res 2004, 32 (Database issue): D109–11. doi:10.1093/nar/gkh023. PMC 308757. PMID 14681370.
  • Grundhoff A., Sullivan C. S., Ganem D.: A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 2006, 12, 733-250.
  • Guo X. K., Zhang Q., Gao L., Li N., Chen X. X., Feng W. H.: Increasing expression of micro RNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J. Virol. 2013, 87, 1159-1171.
  • He L., Thomson J. M., Hemann M. T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S. W., Hannon G. J., Hammond S. M.: A microRNA polycistron as a potential human oncogene. Nature 2005, 435, 828-833.
  • Hulanicka M., Garncarz M., Parzeniecka-Jaworska M., Jank M.: Plasma miRNAs as potential biomarkers of chronic degenerative valvular disease in Dachshunds. BMC Vet. Res. 2014, 10, 205.. doi:10.1186/s12917-014-0205-8.
  • Hwang H. W., Mendell J. T.: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 2006, 94, 776-780.
  • Ichii O., Otsuka S., Ohta H., Yabuki A., Horino T., Kon Y.: MicroRNA expression profiling of cat and dog kidneys. Res. Vet. Sci. 2014, 96, 299-303.
  • Ji Z., Wang G., Xie Z., Wang J., Zhang C., Dong F., Chen C.: Identification of novel and differentially expressed MicroRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics., PLoS One 2012,;7 (11): e49463. doi: 10.1371/journal.pone.0049463.
  • Johnston R. J., Hobert O.: A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 2003, 426, 845-849.
  • Kim J., Krichevsky A., Grad Y., Hayes G. D., Kosik K. S., Church G. M., Ruvkun G.: Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl. Acad. Sci. 2004, 101, 360-365.
  • Kloosterman W. P., Wienholds E., de Bruijn E., Kauppinen S., Plasterk R. H.: In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probe. Nat. Methods 2006, 3, 27-29.
  • Lee R. C., Feinbaum R. L., Ambros V.: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843-8542.
  • Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., Kim V. N.: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415-419.
  • Lee Y., Jeon K., Lee J. T., Kim S., Kim V. N.: MicroRNA maturation: stepwise processing and subcellular localization. Embo J. 2002, 21, 4663-4670.
  • Li Z., Liu H., Jin X., Lo L., Liu J.: Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics 2012, 13, 731, doi: 10.1186/1471-2164-13-731.
  • Li Z., Wang H., Chen L., Wang L., Liu X., Ru C., Song A.: Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis Holstein cattle by deep sequencing. Anim. genet. 2014, 45, 20-27.
  • Liu J., Valencia-Sanchez M. A., Hannon G. J., Parker R.: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell. Biol. 2005, 7, 719-723.
  • Lund E., Guttinger S., Calado A., Dahlberg J. E., Kutay U.: Nuclear export of microRNA precursors. Science 2004, 303, 95-98.
  • Martinez J., Patkaniowska A., Urlaub H., Lührmann R., Tuschl T.: Single stranded antisense siRNA guide target RNA cleavage in RNAi. Cell 2002, 110, 563-574.
  • Naguibneva M., Ameyar-Zazoua A., Polesskaya S., Ait-Si-Ali R., Groisman M., Souidi S., Cuvellier A.: The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 2006, 8, 278-284.
  • Olsen P. H., Ambros V.: The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 1999, 216, 671-680.
  • Plasterk R. H. A.: Micro RNAs in Animal Development. Cell 2006, 124, 877-881 doi 10.1016/j.cell.2006.02.030.
  • Podolska A., Anthon C., Bak M., et al.: Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae. BMC Genomics 2012, 13, 459.
  • Potenza N., Papa U., Mosca N., Zerbini F., Nobile V., Russo A.: Human microRNAhsa-miR-125a 5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res. 2011, 39, 5157-5163.
  • Redshaw N., Wilkes T., Whale A., Cowen S., Huggett J., Foy C. A.: A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. Biotechniques 2013, 54, 155-164.
  • Rodriguez A., Griffiths-Jones S., Ashurst J. L., Bradley A.: Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004, 14, 1902-1910.
  • Samols M. A., Hu J., Skalsky R. L., Renne R.: Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcomaassociated herpesvirus. J. Virol. 2005, 79, 9301.
  • Schauer S. N., Sontakke S. D., Watson E. D., Esteves C. L., Donadeu F. X.: Involvement of miRNAs in equine follicle development. Reproduction 2013, 146, 273-282. doi: 10.1530/REP-13-0107.
  • Sen G. L., Blau H. M.: Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell. Biol. 2005, 7, 633-636.
  • Siengdee P., Trakooljul N., Murani E., Brand B., Schwerin M., Wimmers K., Ponsuksili S.: Pre-and post-natal muscle microRNA expression profiles of two pig breeds differing in muscularity. Gene 2015, 561, 190-198.
  • Silveira J. C. da, Veeramachaneni D. N., Winger Q. A., Carnevale E. M., Bouma G. J.: Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 2012, 19, 86,71. doi: 10.1095/biolreprod.111.093252.
  • Steudemann C., Bauersachs S., Weber K., Wess G.: Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls. BMC Vet. Res. 2013, 9, 12, doi: 10.1186/1746-6148-9-12.
  • Tang Q., Wu Y. Q., Chen D. S., Zhou Q., Chen H. C., Liu Z. F.: Bovine herpesvirus 5 encodes a unique pattern of microRNAs compared with Bovine herpesvirus 1. J. Gen. Virol. 2014, 95, 671-678. doi: 10.1099/vir.0.061093-0.
  • Tesfaye D., Worku D., Rings F., Phatsara C., Tholen E., Schellander K., Hoelker M.: Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol. Reprod. Dev. 2009, 76, 665-677. doi: 10.1002/mrd.21005
  • Tian F., Luo J., Zhang H., Chang S., Song J.: MiRNA expression signatures induced by Marek’s disease virus infection in chickens. Genomics 2012, 99, 152-159.
  • Tuddenham L., Wheeler G., Ntounia-Fousara S., Waters J., Hajihosseini M. K., Clark I., Dalma T.: The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells FEBS Lett. 2006, 580, 4214-4217.
  • Uhl W. E., Suter S., Antes T., Tompkins S. M.: MiRNA Profiles of Canine Lymphoid Cell Line. FASEB J. 2009, April 23 (Meeting Abstract Supplement), 361.3
  • Uhl W. E., Suter S., Krimer P., Schliekelman P., Tompkins S. M., Suter S.: Identification of altered MicroRNA expression in canine lymphoid cell lines and cases of B- and T-Cell lymphomas. Genes Chromosomes Cancer 2011, 950-967. doi: 10.1002/gcc.20917.
  • Uhl W. E., Suter S., Krimer P., Tompkins S. M., Lester C. H., Suter S.: MiRNA Profiles of Spontaneous Canine Lymphoid Tumors, FASEB J. 2010, April, 24 (Meeting Abstract Supplement) 1027.8.
  • Weber K., Rostert N., Bauersachs S., Wess G.: Serum microRNA profiles in cats with hypertrophic cardiomyopathy. Mol. Cell. Biochem. 2015, 402, 171-180.
  • Wicik Z., Gajewska M., Majewska A., Walkiewicz D., Osińska E., Motyl T.: Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers. J. Anim. Breed Genet. 2016, 133, 31-42.
  • Wienholds E., Plasterk R. H.: MicroRNA function in animal development. FEBS lett. 2005, 579, 5911-5922.
  • Vinall R. L., Kent M. S., deVere White R.: White Expression of microRNAs in urinary bladder samples obtained from dogs with grossly normal bladders, inflammatory bladder disease, or transitional cell carcinoma. Am. J. of Vet. Res. 2012, 73, 1626-1633.
  • Yi R., Qin Y., Macara I. G., Cullen B. R.: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17, 3011-3016.
  • Yin J. Q., Zhao R. C., Morris K. V.: Profiling microRNA expression with microarrays. Trends Biotechnol. 2008, 26, 70-76.
  • Zeng Y., Cullen B. R.: Sequence requirements for micro RNA processing and function in human cells. RNA 2003, 9, 112-123.
  • Zhao P., Zhao L., Zhang T., Wang H., Qin C., Yang S., Xia X.: Changes in microRNA expression induced by rabies virus infection in mouse brains. Microb. Pathog. 2012, 52, 47-54.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cba60442-5111-4ecb-a31e-cce02eeee2db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.