PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 1 |

Tytuł artykułu

Rooting shoots of apple varieties and their tetraploids obtained by the in vitro technique

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
For breeding purposes, the number of neo-tetraploids of apple cultivars have been derived by in vitro technique. The first attempts at rooting and acclimatization of tetraploid shoots failed. The aim of the study was to develop an effective method for rooting microcuttings of apple neo-tetraploids. In the first stage of the study, in vitro rooting method was optimized for the shoots of diploid donor cultivars. Shoots were rooted on Murashige and Skoog [1962] (MS) medium with a reduced content of nitrogen, in the presence of auxins alone or in combination (indole-3-butyric acid – IBA, 1-naphthaleneacetic acid – NAA and indole- -3-acetic acid – IAA) with addition of putrescine, arginine or ornithine. The compounds were applied continuously for 25 days (one-step rooting system) or for seven days with subsequent transplanting shoots onto a medium without these compounds (two-step rooting method). Tetraploid microcuttings of the cultivars ‘Free Redstar’, ‘Gala Must’, ‘Pinova’ and ‘Redchief’ were evaluated for rooting on the selected medium considered optimal for their diploid counterparts. The shoots of all diploid apple scion cultivars had low rooting capacity. IBA alone poorly stimulated root formation. Significant improvement of rooting to 60–80% was achieved through the application of auxins, 2.5 µM IBA or 1.3 µM NAA combined with 5 µM IAA and 50 µM putrescine in the two-step rooting system with darkness and increased temperature of 26°C during seven-day induction phase. The replacement of benzyladenine (BA) by meta-Topolin (m-T) in the last multiplication subculture influenced positively shoot acclimatization. Tetraploids had comparable or slightly lower rooting and acclimatization ability compared to their diploid counterparts.

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.49-62,fig.,ref.

Twórcy

  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

Bibliografia

  • Bais, H.P., Ravishankar, G.A. (2002). Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss. Organ Cult., 69, 1–34.
  • Compton, M.E., Gray, D.J., Elmstrom, G.W. (1993). A simple protocol for micropropagating diploid and tetraploid watermelon using shoot-tip explants. Plant Cell Tiss. Organ Cult., 33(2), 211–217.
  • De Klerk, G.J., Guan, H., Huisman, P., Marinova, S. (2011). Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul., 63(2), 175–185.
  • De Klerk, G.J., Van der Krieken, W., De Jong, J.C. (1999). Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. – Plant, 35(3), 189–199.
  • Dobránszki, J., Magyar-Tábori, K., Jámbor-Benczúr, E., Lazányi, J., Bubán, T., Szalai, J. (2000). Influence of aromatic cytokinins on shoot multiplication and their post-effects on rooting of apple cv. Húsvéti rozmaring. Int. J. Hortic. Sci., 6, 84–7.
  • Dobránszki, J., Teixeira da Silva, J.A. (2010). Micropropagation of apple – a review. Biotechnol. Adv., 28, 462– 488.
  • Druart, P. (1997). Optimization of culture media for in vitro rooting of Malus domestica Borkh. cv. Compact Spartan. Biol. Plant., 39, 67–77.
  • Epstein, E., Ludwig‐Müller, J. (1993). Indole‐3‐butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol. Plant., 88(2), 382–389.
  • Gantait, S., Mandal, N., Bhattacharyya, S., Das, P.K. (2011). Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii Bolus cv. Sciella. Plant Cell Tiss. Organ Cult., 106(3), 485.
  • Janick, J., Cummins, J.N., Brown, S.K., Hemmat, M. (1996). Apples. In: Fruit breeding, tree and tropical fruits, vol. 1, Janick, J., Moore, J.N. (eds.). John Willey and Sons, New York, 1–77.
  • Kesari, V., Krishnamachari, A., Rangan, L. (2009). Effect of auxins on adventitious rooting from stem cuttings of candidate plus tree Pongamia pinnata (L.), a potential biodiesel plant. Trees, 23(3), 597–604.
  • Kevers, C., Hausman, J.F., Faivre-Rampant, O., Evers, D., Gaspar, T. (1997). Hormonal control of adventitious rooting: progress and questions. J. Appl. Bot., 71, 71– 79.
  • Lane, W.D., McDougald, J.M. (1982). Shoot tissue culture of apple: comparative response of five cultivars to cytokinin and auxin. Can. J. Plant Sci., 62, 689–94.
  • Magyar-Tábori, J., Dobránszki, E., Jámbor-Benczúr, J., Lazányi, J., Szalai, J. (2001a). Effects of activated charcoal on rooting of in vitro apple (Malus domestica Borkh.) shoots. Int. J. Hortic. Sci., 7, 98–101.
  • Magyar-Tábori, K., Dobránszki, J., Jámbor-Benczúr, E., Bubán, T., Lazányi, J., et al. (2001b). Post effects of cytokinins and auxin levels of proliferation media on rooting ability of in vitro apple shoots (Malus domestica Borkh.) ‘Red Fuji’. Int. J. Hortic. Sci., 7, 26–9.
  • Moncousin, Ch. (1991). Rooting of microcuttings: general aspects. Acta Hortic., 289, 301–310.
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 472–497.
  • Nag, S., Saha, K., Choudhuri, M.A. (2001). Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul., 20(2), 182–194.
  • Naija, S., Elloumi, N., Ammar, S., Kevers, C., Dommes, J. (2009). Involvement of polyamines in the adventitious rooting of micropropagated shoots of the apple rootstock MM106. In Vitro Cell. Dev. Biol. – Plant, 45, 83–91.
  • Neves, C., Santos, H., Vilas-Boas, L., Amâncio, S. (2002). Involvement of free and conjugated polyamines and free amino acids in the adventitious rooting of micropropagated cork oak and grapevine shoots. Plant Physiol. Biochem., 40(12), 1071–1080. Orlikowska, T. (1992a). Effect of amino acids on rooting of apple dwarf rootstocks in vitro. Biol. Plant., 34(1–2), 39–44.
  • Orlikowska, T. (1992b). Influence of arginine on in vitro rooting of dwarf apple rootstock. Plant Cell Tiss. Organ Cult., 31, 9–14.
  • Palavan-Ünsal, N. (1987). Polyamine metabolism in the roots of Phaseolus vulgaris. Interaction of the inhibitors of polyamine biosynthesis with putrescine in growth and polyamine biosynthesis. Plant Cell Physiol., 28(4), 565–572.
  • Peeters, A.J., Gerards, W., Barendse, G.W., Wullems, G.J. (1991). In vitro flower bud formation in tobacco: interaction of hormones. Plant Physiol., 97(1), 402–408.
  • Podwyszyńska, M., Sowik, I., Machlańska, A., Kruczyńska, D., Dyki B. (2017). In vitro tetraploid induction of Malus × domestica Borkh. using leaf or shoot explants. Sci. Hortic. (in press). Podwyszyńska, M., Wegrzynowicz-Lesiak, E., Dolezal, K., Krekule, J., Strnad, M., Saniewski, M. (2012). New cytokinlns-meta-methoxytopolins in micropropagation of Cotinus coggygria Scop. ‘Royal Purple’. Propag. Ornam. Plants, 12(4), 220–228.
  • Podwyszyńska, M., Kruczyńska, D., Machlańska, A., Dyki, B., Sowik, I. (2016). Nuclear DNA content and ploidy level of apple cultivars including Polish ones in relation to some morphological traits. Acta Biol. Cracov. Bot., 58(1), 81–93.
  • Sedysheva, G.A., Gorbacheva, N.G. (2013). Estimation of new tetraploid apple forms as donors of diploid gametes for selection on a polyploidy level. Univ. J. Plant Sci., 1(2), 49–54.
  • Smulders, M.J.M., Van de Ven, E.T.W.M., Croes, A.F., Wullems, G.J. (1990). Metabolism of 1-naphthale- neacetic acid in explants of tobacco: evidence for release of free hormone from conjugates. J. Plant Growth Regul., 9(1–4), 27–34.
  • Sriskandarajah, S., Skirvin, R.M., Abu-Qaoud, H. (1990). The effect of some macronutrients on adventitious root development on scion apple cultivars in vitro. Plant Cell Tiss. Organ Cult., 21, 185–189.
  • Strader, L.C., Bartel, B. (2011). Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant, 4(3), 477–486.
  • Sun, Q., Sun, H., Bell, R.L., Li, H., Xin, L. (2011). Variation of phenotype, ploidy level, and organogenic potential of in vitro regenerated polyploids of Pyrus communis. Plant Cell Tiss. Organ Cult., 107(1), 131–140.
  • Van der Krieken, W.M., Breteler, H., Visser, M.H. (1992). The effect of the conversion of indolebutyric acid into indoleacetic acid on root formation on microcuttings of Malus. Plant Cell Physiol., 33(6), 709–713.
  • Werbrouck, S., Van der Jeugt, B., Dewitte, W., Prinsen, E., Van Onckelen, H., Debergh, P. (1995). The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Rep., 14, 662–665.
  • Werbrouck, S.P.O., Strnad, M., Van Onckelen, H.A., Debergh, P.C. (1996). Meta-topolin an alternative to benzyladenine in tissue culture? Physiol. Plant., 98, 291– 297.
  • Wojtania, A., Gabryszewska, E., Podwyszyńska, M. (2011). The effect of growth regulators and sucrose concentration on in vitro propagation of Camelia japonica L. Propag. Ornam. Plants, 11, 177–183.
  • Zimmerman, R.H., Fordham, I.M. (1985). Simplified method for rooting apple cultivars in vitro J. Am. Soc. Hortic. Sci., 110, 34–38.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cb9fbbf1-6982-467c-9325-cd91553a7eb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.