PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 24 |
Tytuł artykułu

Effects of astaxanthin and canthaxanthin addition to ranchu goldfish (Carassius auratus) diet related to rate of color quality enhancement

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Purpose of this Study is to comprehend and compare the quickness of astaxanthin and canthaxanthin in improving ranchu goldfish color. The ability of carotenoids to be digested and absorbed depends on the structure. Carotenoids that quickly improve color quality are desirable. In this work, goldfish were fed one to three diets for 30 days to determine the effects of astaxanthin and canthaxanthin on color enhancing, growth and survival rate. The experiment consisted of (A) an unsupplemented control, (B) astaxanthin (carophyll pink 100 mg / kg), and (C) canthaxanthin (carophyll red at 100 mg/kg). Samples of dorsal skin were observed and measured via TOCA Color Finder (TCF) each day. The best colour result was obtained by canthaxanthin, but our work revealed that growth and survival rates are not significantly different among the groups.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
24
Opis fizyczny
p.178-183,fig.,ref.
Twórcy
autor
  • Faculty of Fisheries and Marine Sciences, Padjadjaran University, Bandung, Indonesia
autor
  • Faculty of Fisheries and Marine Sciences, Padjadjaran University, Bandung, Indonesia
autor
  • Faculty of Fisheries and Marine Sciences, Padjadjaran University, Bandung, Indonesia
autor
  • Faculty of Fisheries and Marine Sciences, Padjadjaran University, Bandung, Indonesia
Bibliografia
  • [1] Yeşilayer, N., Aral, O., Karsli, Z., et al. The Effects of Different Carotenoid Sources on Skin Pigmentation of Goldfish (Carassius auratus). The Israeli Journal of Aquaculture 2011, 63, 9 pp.
  • [2] Yuangsoi, B., O. Jintasataporn, P. Tabthipwon, dan C. Kamel. 2010. Utilization of carotenids in fancy carp (Cyprinus carpio): astaxanthin, lutein and carotene. World Applied Science Journal 11(5): 590-598
  • [3] Stachowiak B. Astaxanthin synthesis by yeast xanthophyllomyces dendrorhous and its mutants on media based on plant extracts. Indian J Microbiol. 2012; 52: 654-659. doi:10.1007/s12088-012-0306-7
  • [4] Gupta SK, Jha AK, Pal AK, Venkateshwarlu G. Use of natural carotenoids for pigmentation in fishes. Nat Prod Radiance 2007; 6: 46-49
  • [5] W. K. O. V. Weeratunge and B. G. K. Perera. Formulation of a fish feed for goldfish with natural astaxanthin extracted from shrimp waste. Chem Cent J. 2016; 10: 44. doi:10.1186/s13065-016-0190-z
  • [6] Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006; 19: 669-675. doi:10.1016/j.jfca.2006.01.003
  • [7] Kobayashi M, Kakizono T, Nagai S. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng. 1991; 71: 335-339. doi:10.1016/0922-338X(91)90346-I
  • [8] Wudu E. Lado, David C. Spanswick, John E. Lewis and Vance L. Trudeau, Electrophysiological characterization of male goldfish (Carassius auratus) ventral preoptic area neurons receiving olfactory inputs, Frontiers in Neuroscience, 8 (2014) 185. doi:10.3389/fnins.2014.00185
  • [9] B. Kerbel and S. Unniappan, Nesfatin‐1 Suppresses Energy Intake, Co‐localises Ghrelin in the Brain and Gut, and Alters Ghrelin, Cholecystokinin and Orexin mRNA Expression in Goldfish, Journal of Neuroendocrinology, 24, 2, (366-377), (2012).
  • [10] L.F. Canosa, G.C. Lopez, E. Scharrig, K. Lesaux‐Farmer, G.M. Somoza, O. Kah and V.L. Trudeau, Forebrain mapping of secretoneurin‐like immunoreactivity and its colocalization with isotocin in the preoptic nucleus and pituitary gland of goldfish, Journal of Comparative Neurology, 519, 18, (3748-3765), (2011).
  • [11] Sachuriga, Naoto Iinuma, Haruki Shibata, Daisuke Yoshida, Norifumi Konno, Tomoya Nakamachi and Kouhei Matsuda, Intracerebroventricular administration of sulphated cholecystokinin octapeptide induces anxiety‐like behaviour in goldfish, Journal of Neuroendocrinology, 31, 1, (2019).
  • [12] Ayelén Melisa Blanco, Lakshminarasimhan Sundarrajan, Juan Ignacio Bertucci and Suraj Unniappan, Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research, General and Comparative Endocrinology, 10.1016/j.ygcen.2017.02.001, 257, (13-28), (2018).
  • [13] Ehud Vinepinsky, Opher Donchin and Ronen Segev, Wireless electrophysiology of the brain of freely swimming goldfish, Journal of Neuroscience Methods, 278, (76), (2017).
  • [14] Dillon F. Da Fonte, Lei Xing, Myy Mikwar and Vance L. Trudeau, Secretoneurin-A inhibits aromatase B ( cyp19a1b ) expression in female goldfish ( Carassius auratus ) radial glial cells, General and Comparative Endocrinology, 10.1016/j.ygcen.2017.04.014, (2017)
  • [15] Xin Qi, Wenyi Zhou, Qingqing Wang, Liang Guo, Danqi Lu and Haoran Lin, Gonadotropin-Inhibitory Hormone, the Piscine Ortholog of LPXRFa, Participates in 17β-Estradiol Feedback in Female Goldfish Reproduction, Endocrinology, 158, 4, (860), (2017).
  • [16] Elsie Tachie Mensah, Ayelén Melisa Blanco, Andrew Donini and Suraj Unniappan, Brain and intestinal expression of galanin-like peptide (GALP), galanin receptor R1 and galanin receptor R2, and GALP regulation of food intake in goldfish (Carassius auratus), Neuroscience Letters, 10.1016/j.neulet.2016.11.037, 637, (126-135), (2017).
  • [17] Ayelén M. Blanco, Aída Sánchez‐Bretaño, María J. Delgado and Ana I. Valenciano, Brain Mapping of Ghrelin O‐Acyltransferase in Goldfish (Carassius Auratus): Novel Roles for the Ghrelinergic System in Fish?, The Anatomical Record, 299, 6, (748-758), (2016).
  • [18] Takeshi Kato, Yusuke Yamada and Naoyuki Yamamoto, General visceral and gustatory connections of the posterior thalamic nucleus of goldfish, Journal of Comparative Neurology, 519, 15, (3102-3123), (2011).
  • [19] M. Mikwar, L. Navarro-Martin, L. Xing, H. Volkoff, W. Hu and V.L. Trudeau, Stimulatory effect of the secretogranin-ll derived peptide secretoneurin on food intake and locomotion in female goldfish (Carassius auratus), Peptides, 10.1016/j.peptides.2016.01.007, 78, (42-50), (2016).
  • [20] R. Gonzalez and S. Unniappan, Mass spectrometry-assisted confirmation of the inability of dipeptidyl peptidase-4 to cleave goldfish peptide YY(1–36) and the lack of anorexigenic effects of peptide YY(3–36) in goldfish (Carassius auratus), Fish Physiology and Biochemistry, 42, 3, (831), (2016).
  • [21] Aída Sánchez-Bretaño, Marie-M. Gueguen, Joel Cano-Nicolau, Olivier Kah, Ángel L. Alonso-Gómez, María J. Delgado and Esther Isorna, Anatomical distribution and daily profile of gper1b gene expression in brain and peripheral structures of goldfish ( Carassius auratus), Chronobiology International, 10.3109/07420528.2015.1049615, 32, 7, (889-902), (2015).
  • [22] Takafumi Kawai, Atsushi Yoshimura and Yoshitaka Oka, Neurones in the Preoptic Area of the Male Goldfish are Activated by a Sex Pheromone 17α,20β‐Dihydroxy‐4‐Pregnen‐3‐One, Journal of Neuroendocrinology, 27, 2, (123-130), (2015).
  • [23] Aída Sánchez-Bretaño, Ayelén M. Blanco, Suraj Unniappan, Olivier Kah, Marie-M. Gueguen, Juan I. Bertucci, Ángel L. Alonso-Gómez, Ana I. Valenciano, Esther Isorna, María J. Delgado and Juan Fuentes, In Situ Localization and Rhythmic Expression of Ghrelin and ghs-r1 Ghrelin Receptor in the Brain and Gastrointestinal Tract of Goldfish (Carassius auratus), PLOS ONE, 10, 10, (e0141043), (2015).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-cb8615ee-8f6c-49a0-a6c8-00b913ea61a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.