PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 13 | 1 |

Tytuł artykułu

Variation in the use of harmonics in the calls of laryngeally echolocating bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The echolocation calls of bats may contain a single acoustic element (the fundamental frequency or a harmonic) or multiple acoustic elements that may (or may not) include the fundamental element. We hypothesize that the detection of harmonics is affected by three factors: 1) species, 2) situation, and 3) recording quality. To test our hypotheses, we recorded and analyzed approximately 2,300 calls from 17 species and 1 subspecies in 6 families of bats using a 1-channel and 4-channel microphone array. The percentage of calls with multiple acoustic elements varied from 0 to 83% across species. Furthermore, recordings from a 4-channel microphone array (1 m tetrahedron arrangement) revealed that the percent of calls with multiple acoustic elements varied across channels by up to 50%, indicating the effect of bat position relative to the microphone. In some species, presence of multiple acoustic elements was predicted by call energy: calls with sufficient energy (threshold varied by species) had multiple acoustic elements above the noise floor of the recording system. In the remaining species that produced calls with multiple acoustic elements, we found two clusters of calls. In one cluster, the presence of multiple acoustic elements was predicted by received call energy. In the 2nd cluster, call energy was lower, and almost all calls included multiple acoustic elements. The detection of harmonics independent of recorded energy suggests the intriguing possibility that harmonics are used differently in these species. Finally, to test the effect of situation, we recorded the echolocation calls of big brown bats (Eptesicus fuscus) flying in three settings: an anechoic flight room, during roost emergence, and foraging in an open area. Call energy shifted to lower frequencies and fewer acoustic elements as the recording distance and the volume of the flight environment increased (i.e., as clutter decreased). Comparing flight room with foraging calls revealed that the second harmonic of open air foraging signals decreased by about 30 dB (relative to the fundamental). Overall, our results show that detection of echolocation signals with harmonics varied significantly across species. We also demonstrate that relative harmonic intensity varies according to the flight situation within a species, and when combined with the effects of call directionality and relative position of bat and microphone, these factors influence harmonic detection in echolocation recordings.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

1

Opis fizyczny

p.169-178,fig.,ref.

Twórcy

autor
  • Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
autor

Bibliografia

  • Bayefsky-Anand, S., M. D. Skowronski, M. B. Fenton, C. Korine, and M. W. Holderied. 2008. Variations in the echolocation calls of the European free-tailed bat (Tadarida teniotis, Molossidae). Journal of Zoology (London), 275: 115-123.
  • Dechmann, D. K. N., S. L. Heucke, L. Giuggioli, K. Safi, C. C. Voigt, and M. Wikelski. 2009. Experimental evidence for group hunting via eavesdropping in echolocating bats. Proceedings of the Royal Society, 276B: 2721-2728.
  • Faure, P. A., and R. M. R. Barclay. 1994. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. Journal of Comparative Physiology, 174A: 651-660.
  • Fenton, M. B., and G. P. Bell. 1981. Recognition of species of insectivorous bats by their echolocation calls. Journal of Mammalogy, 62: 233-243.
  • Gillam, E. H., N. Ulanovsky, and G. F. McCracken. 2007. Rapid jamming avoidance in biosonar. Proceedings of the Royal Society, 274B: 651-660.
  • Goerlitz, H. R., H. M. ter Hofstede, M. R. K. Zeale, G. Jones, and M. W. Holderied. 2010. An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20: 1568-1572.
  • Greif, S, and B. M. Siemers. 2010. Innate recognition of water bodies in echolocating bats. Nature Communications, doi: 10.1038/ncommsl 110.
  • Griffin, D. R. 1958. Listening in the dark: acoustic orientation of bats and men. Yale University Press, New Haven, CT, 415 pp.
  • Hartley, D. J., K. A. Campbell, and R. A. Suthers. 1989. The acoustic behavior of the fish-catching bat, Noctilio lepori- nus, during prey capture. Journal of the Acoustical Society of America, 86: 8-27.
  • Hiryu, S., M. E. Bates, J. A. Simmons, and H. Riquimaroux. 2010. FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proceedings of the National Academy of Sciences of the USA, 107: 7048-7053.
  • Jakobsen, L., and A. Surlykke. 2010. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit. Proceedings of the National Academy of Sciences of the USA, 107: 13930-13935.
  • Jones, G., and M. W. Holderied. 2007. Bat echolocation calls: adaptation and convergent evolution. Proceedings of the Royal Society, 274B: 905-912.
  • Jones, G., and E. C. Teeling. 2006. The evolution of echolocation in bats. Trends in Ecology and Evolution, 21: 149-156.
  • Kingston, I., and S. J. Rossiter. 2004. Harmonic-hopping in Wallacea's bats. Nature, 429: 654-657.
  • Lawrence, B. D., and J. A. Simmons. 1982. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. Journal of the Acoustical Society of America, 71: 585-590.
  • Neuweiler, G. 1990. Auditory adaptations for prey capture in echolocating bats. Physiological Review, 70: 615-641.
  • Peterson, D. C., S. Voytenko, D. Gans, D. A. Galazyuk, and J. J. Wenstrup. 2008. Intracellular recordings from combination-sensitive neurons in the inferior colliculus. Journal of Neurophysiology, 100: 629-645.
  • Portfors, C. V., and J. J. Wenstrup. 2001. Responses to combinations of tones in the nuclei of the lateral lemniscus. Journal of the Association for Research in Otolaryngology, 2: 104-117.
  • Russo, D., G. Jones, and R. Arlettaz. 2007. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. Journal of Experimental Biology, 210: 166-176.
  • Schnitzler, H.-U., and E. K. V. Kalko. 2001. Echolocation by insect-eating bats. Bioscience, 51: 557-569.
  • Siemers, B. N., and H.-U. Schnitzler. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429: 657-661.
  • Simmons, J. A., and R. A. Stein. 1980. Acoustic imaging in bat sonar: echolocation signals and the evolution of echolocation. Journal of Comparative Physiology, 135A: 61-84.
  • Skowronski, M. D. 2006-2010. callViewer, version 18. 1050 W. NASA Blvd., Melbourne, FL, 32901, USA.
  • Skowronski, M. D., and M. B. Fenton. 2008. Model-based automated detection of echolocation calls using the links detector. Journal of the Acoustical Society of America, 124: 328-336.
  • Skowronski, M. D., and M. B. Fenton. 2009. Detecting bat calls: an analysis of automated methods. Acta Chiropterologica, 11: 191-203.
  • Skowronski, M. D., and J. G. Harris. 2006. Acoustic detection and classification of Microchiroptera using machine learning: lessons learned from automatic speech recognition. Journal of the Acoustical Society of America, 119: 1817-1833.
  • Stamper, S. A., M. E. Bates, D. Benedicto, and J. A. Simmons. 2009. Role of broadcast harmonics in echo delay perception by big brown bats. Journal of Comparative Phys­iology, 195A: 79-89.
  • Suga, N., W. E. O'Neill, and T. Manabe. 1979. Harmonic- sensitive neurons in the auditory cortex of the mustache bat. Science, 203: 270-274.
  • Surlykke, A., K. Ghose, and C. F. Moss. 2009a. Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. Journal of Experimental Biology, 212: 1011-1020.
  • Surlykke, A., S. B. Pedersen, and L. Jakobsen. 2009b. Echolocating bats emit a highly directional sonar sound beam in the field. Proceedings of the Royal Society, 276B: 853-960.
  • Suthers, R. A., D. J. Hartley, and J. J. Wenstrup. 1988. The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandti. Journal of Comparative Physiology, 162A: 799-813.
  • Swartz, C., J. Tressler, H. Keller, M. Vanzant, S. Ezell, and M. Smotherman. 2007. The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. Journal of Comparative Physiology, 193A: 853-863.
  • Teeling, E. C. 2009. Hear, hear: the convergent evolution of echolocation in bats? Trends in Ecology and Evolution, 24: 351-354.
  • Ulanovsky, N., M. B. Fenton, A. Tsoar, and C. Korine. 2004. Dynamics of jamming avoidance in echolocating bats. Proceedings of the Royal Society, 271B: 1467-1475.
  • Voigt-Heucke, S., M. Taborsky, and D. K. N. Dechmann. 2010. A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. Animal Behaviour, 80: 59-67.
  • Veselka, N., D. D. McErlain, D. W. Holdsworth, J. L. Eger, R. K. Chhem, M. J. Mason, K. L. Brain, P. A. Faure, and M. B. Fenton. 2010. A bony connection signals laryngeal echolocation in bats. Nature, 463: 939-942.
  • Zhuang, Q., and R. Müller. 2007. Numerical study of the effect of the noseleaf on biosonar beam-forming in a horse-shoe bat. Physical Review E, 76: 051902.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cafbf391-6099-4d43-9d93-b13194bcaf77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.