PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 55 | 4 |

Tytuł artykułu

Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.).The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered in their own taxa and formed monophyletic clades. From the pathogenicity test, all isolates of D. zeae and E. mallotivora showed pathogenic reactions on their respective host plants. Genetic variability of these isolates was assessed using repetitive sequence-based PCR (rep-PCR) fingerprinting. The results indicated interspecies, and intraspecies variation in both species’ isolates. There were more polymorphic bands shown by rep-PCR fingerprints than enterobacterial repetitive intergenic consensus (ERIC) and BOX- PCRs, however both species’ isolates produced distinguishable banding patterns. Unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis indicated that all Dickeya and Erwinia isolates from the same species were grouped in the same main cluster. Similarity among the isolates ranged from 77 to 99%. Sequencing of 16S rRNA using eubacteria fD1 and rP2 primers, and rep-PCR fingerprinting revealed diversity among Dickeya and Erwinia isolates. But this method appears to be reliable for discriminating isolates from pineapple heart rot and papaya dieback.

Wydawca

-

Rocznik

Tom

55

Numer

4

Opis fizyczny

p.396-404,fig.,ref.

Twórcy

  • Rice and Industrial Crops Research Centre, MARDI Seberang Perai, P.O.Box 203, 13200 Kepala Batas, Penang, Malaysia
autor
  • School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
autor
  • School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Bibliografia

  • Amin N.M., Bunawan H., Redzuan R.A., Jaganath I.B.S. 2010. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. International Journal of Molecular Sciences 12 (1): 39–45.
  • Avrova A.O., Hyman L.J., Toth R.L., Toth I.K. 2002. Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi. Applied and Environmental Microbiology 68 (4): 1499–1508.
  • Barionovi D., Giorgi S., Stoeger A.R., Ruppitsch W., Scortichini M. 2006. Characterization of Erwinia amylovora strains from different host plants using repetitive‐sequences PCR analysis, and restriction fragment length polymorphism and short‐sequence DNA repeats of plasmid pEA29. Journal of Applied Microbiology 100 (5): 1084–1094.
  • De Boer S.H., Kelman A. 2001. Gram-negative bacteria. Erwinia Soft Rot Group. p. 56–72. In: “Laboratory Guide for Identification of Plant Pathogenic Bacteria” (N.W. Schaad, J.B. Jones, W. Chun, eds.). The American Phytopathological Society Press, St. Paul, Minnesota, USA, 398 pp.
  • Gallelli A., Galli M., De Simone D., Zaccardelli M., Loreti S. 2009. Phenotypic and genetic variability of Pectobacterium carotovorum isolated from artichoke in the Sele Valley. Journal of Plant Pathology 91 (3): 757–761.
  • Georghiou P.R., Doggett A.M., Kielhofner M.A., Stout J.E., Watson D.A., Lupski J.R., Hamill R.J. 1994. Molecular fingerprinting of Legionella species by repetitive element PCR. Journal of Clinical Microbiology 32 (12): 2989–2994.
  • Johnston A. 1957. Bacterial heart rots of the pineapple. Malaysian Agricultural Journal 40: 2–8.
  • Kelman A. 1953. The bacterial wilt caused by Pseudomonas solanacearum. North Carolina Agriculture Experimental Station Technical Bulletin 99: 194.
  • Kaneshiro W.S., Burger M., Vine B.G., de Silva A.S., Alvarez A.M. 2008. Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii. Plant Disease 92 (10): 1444–1450.
  • Kwon S.W., Go S.J., Kang H.W., Ryu J.C., Jo J.K. 1997. Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology 47: 1061–1067.
  • Lim W.H. 1985. Diseases and disorders of pineapples in Peninsular Malaysia. MARDI Report 97.
  • Lee Y.A., Chen K.P., Hsu Y.W. 2006. Characterization of Erwinia chrysanthemi, the soft‐rot pathogen of white‐flowered calla lily, based on pathogenicity and PCR‐RFLP and PFGE analyses. Plant Pathology 55 (4): 530–536.
  • Ma B., Hibbing M.E., Kim H.S., Reedy R.M., Yedidia I., Breuer J., Charkowski A.O. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97: 1150–1163.
  • Marrero G., Schneider K.L., Jenkins D.M., Alvarez A.M. 2013. Phylogeny and classification of Dickeya based on multilocus sequence analysis. International Journal of Systematic and Evolutionary Microbiology 63 (Pt 9): 3524–3539.
  • Nabhan S., Wydra K., Linde M., Debener T. 2012. The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathology 61 (3): 498–508.
  • Ngadze E., Brady C.L., Coutinho T.A., Van der Waals J.E. 2012. Pectinolytic bacteria associated with potato soft rot and blackleg in South Africa and Zimbabwe. European Journal of Pathology 134 (3): 533–549.
  • Ochiai H., Horino O., Miyajima K., Kaku H. 2000. Genetic diversity of Xanthomonas oryzae pv. oryzae strains from Sri Lanka. Phytopathology 90: 415–421.
  • Parkinson N., Stead D., Bew J., Heeney J., Tsror L., Elphinstone J. 2009. Dickeya species relatedness and clade structure determined by comparison of recA sequences. International Journal of Systematic and Evolutionary Microbiology 59 (Pt 10): 2388–2393.
  • Pitman A.R., Harrow S.A., Visnovsky S.B. 2010. Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. European Journal of Pathology 126 (3): 423–435.
  • Rohlf F.J. 2000. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.02. Exeter Software, Setauket, New York.
  • Samson R., Legendre J.B., Christen R., Saux M.F.L., Achouak W., Gardan L. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology 55: 1415–1427.
  • Sarkar S.F., Guttman D.S. 2004. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology 70 (4): 1999–2012.
  • Sarkar S.F., Gordon J.S., Martin G.B., Guttman D.S. 2006. Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics 174 (2): 1041–1056.
  • Seo S.T., Furuya N., Lim C.K., Takanami Y., Tsuchiya K. 2003. Phenotypic and genetic characterization of Erwinia carotovora from mulberry (Morus spp.). Plant Pathology 52 (2): 140–146.
  • Smith C., Bartz J.A. 1990. Variation in the pathogenicity and aggressiveness of strains of Erwinia carotovora subsp. carotovora isolated from different hosts. Plant Disease 74 (7): 505–509.
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular and Biology and Evolution 28 (1): 2731–2739.
  • Teixeira A.C., Marques A.S., Ferreira M.A. 2009. Low genetic diversity among pathogenic strains of Erwinia psidii from Brazil. Brazilian Journal of Microbiology 40 (3): 678–684.
  • Terta M., Azelmat S., M’hand R.A., Barakate M., Bouteau F., Ennaji M.M. 2012. Molecular typing of Pectobacterium carotovorum isolated from potato tuber soft rot in Morocco. Annals of Microbiology 62 (4): 1411–1417.
  • Versalovic J., Schneider M., de Bruijn F.J., Lupski J.R. 1994. Genomic fingerprinting of bacteria using repetitive sequencebased polymerase chain reaction. Methods in Molecular and Cellular Biology 5: 25–40.
  • Watcharachaiyakup J., Kositratana W. 2009. Metabolic fingerprinting of Erwinia carotovora isolated from jackfruit, chumphada and vegetable. In: The International Society for Southeast Asian Agricultural Sciences Congress 2009, The Emerald Hotel, Bangkok, Thailand, 23–27 February 2009, 213 pp.
  • Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173 (2): 697–703.
  • Wright E.S., Yilmaz L.S., Noguera D.R. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology 78 (3): 717–725.
  • Zhang J., Shen H., Pu X., Lin B., Hu J. 2014. Identification of Dickeya zeae as a causal agent of bacterial soft rot in banana in China. Plant Disease 98 (4): 436–442.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ca5ea106-b440-411e-845d-b550ec46332b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.