PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Soil nematode trophic groups in four different plantations in southern China: implications for restoration

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Intensive anthropogenic disturbances have caused forest ecosystem degradation and soil erosion. Exotic fast-growing species are selected as pioneer species for restoration in degraded hilly lands of southern China. To better understand the potentials of the soil nematode trophic group composition in carbon sequestration, we investigated nematode trophic groups in Acacia, Eucalyptus, and Schima (native species as control) monoculture plantations in southern China after 23 years of reforestation. Our results showed that although total soil nematode abundance was not affected, the Acacia plantation significantly altered nematode trophic group composition over native species. Bacterivore and microbivore abundance, trophic diversity, and microbivore-driven soil organic carbon storage were higher in Acacia mangium than Schima superba. In contrast, plant parasitic nematode abundance and fungivore/bacterivore ratio were lower in Acacia mangium than Schima superba. As a result, Acacia mangium as a fast-growing pioneer tree species could be widely planted to maintain soil biodiversity and store carbon in restoring degraded forests in southern China. Eucalyptus exserta plantation enlarged the soil nematode community, including bacterivores, fungivores, and herbivores, suggesting that there is almost no allelopathy when eliminating anthropogenic disturbance in this study. Reasonable management is crucial for providing timber products and improving the ecological function of Eucalyptus plantations. Our results also highlight the critical roles of soil water and nutrient availability in regulating soil nematode trophic group composition and carbon sequestration.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

3

Opis fizyczny

p.1379-1386,fig.,ref.

Twórcy

autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
  • Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
autor
  • International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China

Bibliografia

  • 1. SEVIK H., CETIN M. Effects of water stress on seed germination for select landscape plants. Pol. J. Environ. Stud. 24 (2), 689, 2015.
  • 2. CETIN M. Sustainability of urban coastal area management: A case study on Cide. J. Sustain. Forest. 35 (7), 527, 2016.
  • 3. YIGIT N., SEVIK H., CETIN M., GUL L. Clonal variation in chemical wood characteristics in Hanönü (Kastamonu) Günlüburun black pine (Pinus nigra Arnold. Subsp. Pallasiana (Lamb.) Holmboe) seed orchard. J. Sustain. Forest. 35 (7), 515, 2016.
  • 4. CETIN M., SEVIK H. Measuring the impact of selected plants on indoor CO₂ concentrations. Pol. J. Environ. Stud. 25 (3), 973, 2016.
  • 5. SEVIK H., CETIN M., BELKAYALI N. Effects of forests on amounts of CO₂: Case study of Kastamonu and Ilgaz Mountain National Parks. Pol. J. Environ. Stud. 24 (1), 253, 2015.
  • 6. GIBSON L., LEE T.M., KOH L.P., BROOK B.W., GARDNER T.A., BARLOW J., PERES C.A., BRADSHAW C.J.A., LAURANCE W.F., LOVEJOY T.E., SODHI N.S. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature. 478 (7369), 378, 2011.
  • 7. KEENAN R.J., REAMS G.A., ACHARD F., DE FREITAS J.V., GRAINGER A., LINDQUIST E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352 (9), 9, 2015.
  • 8. CHAZDON R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science. 320 (5882), 1458, 2008.
  • 9. BAUTISTA-CRUZ A., DEL CASTILLO R.F., ETCHEVERS-BARRA J.D., GUTIÉRREZ-CASTORENA M.D.C., BAEZ A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. Forest Ecol. Manag. 277 (8), 74, 2012.
  • 10. GONG X., LIU Y., LI Q., WEI X., GUO X., NIU D., ZHANG W., ZHANG J., ZHANG L. Sub-tropic degraded red soil restoration: Is soil organic carbon build-up limited by nutrients supply. Forest Ecol. Manag. 300 (7), 77, 2013.
  • 11. ONAINDIA M., AMETZAGA-ARREGI I., SEBASTIÁN M.S., MITXELENA A., RODRÍGUEZ-LOINAZ G., PEÑA L., ALDAY J.G. Can understory native woodland plant species regenerate under exotic pine plantations using natural succession? Forest Ecol. Manag. 308 (11), 136, 2013.
  • 12. ZHAO C., MIAO Y., YU C., ZHU L., WANG F., JIANG L., HUI D., WAN S. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Sci. Rep. 6 (4), 24317, 2016.
  • 13. NEHER D.A. Nematode communities in organically and conventionally managed agricultural soils. J. Nematol. 31 (2), 142, 1999.
  • 14. SHAO Y., ZHANG W., SHEN J., ZHOU L., XIA H., SHU W., FERRIS H., FU S. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biol. Biochem. 40 (8), 2040, 2008.
  • 15. KLASS J.R., PETERS D.P.C., TROJAN J.M., THOMAS S.H. Nematodes as an indicator of plant-soil interactions associated with desertification. Appl. Soil Ecol. 58 (7), 66, 2012.
  • 16. UGARTE C.M., ZABORSKI E.R., WANDER M.M. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biol. Biochem. 64 (9), 103, 2013.
  • 17. CAIXETA L.B., PEREIRA T.J., CASTAÑEDA N.E.N., CARES J.E. Nematode communities as indicators of the status of a soil ecosystem influenced by mining practices in Brazil. Nematology. 18 (3), 265, 2016.
  • 18. YANG L., LIU N., REN H., WANG J. Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecol. Manag. 257 (8), 1786, 2009.
  • 19. WANG J., REN H., YANG L., LI D., GUO Q. Soil seed banks in four 22-year-old plantations in South China: Implications for restoration. Forest Ecol. Manag. 258 (9), 2000, 2009.
  • 20. BLISS T., POWERS T.O., BRASSIL C.E. The spatial influence of aboveground diversity on belowground communities. Ecosphere. 1 (2-3), art7, 2010.
  • 21. KEITH A.M., BROOKER R.W., OSLER G.H.R., CHAPMAN S.J., BURSLEM D.F.R.P., VAN DER WALL R. Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biol. Biochem. 41 (6), 1060, 2009.
  • 22. BINI D., DOS SANTOS C.A., BOUILLET J.P., DE MORAIS GONÇALVES J.L., CARDOSO E.J.B.N. Eucalypus grandis and Acacia mangium in monoculture and intercropped plantations: Evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl. Soil Ecol. 63 (1), 57, 2013.
  • 23. HUANG X., LIU S., WANG H., HU Z., LI Z., YOU Y. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biol. Biochem. 73 (6), 42, 2014.
  • 24. ANDRIUZZI W.S., KEITH A.M., BARDGETT R.D., VAN DER WAL R. Soil nematode assemblage responds weakly to grazer exclusion on a nutrient-rich seabird island. Eur. J. Soil Biol. 58 (9-10), 38, 2013.
  • 25. ZHAO J., WANG X., WANG X., FU S. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil. 385 (1-2), 273, 2014.
  • 26. CHU C., MORTIMER P.E., WANG H., WANG Y., LIU X., YU S. Allelopathic effects of Eucalyptus on native and introduced tree species. Forest Ecol. Manag. 323 (7), 79, 2014.
  • 27. DE NOBILI M., CONTIN M., MONDINI C., BROOKES P.C. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol. Biochem. 33 (9), 1163, 2001.
  • 28. QU X.H., WANG J.G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl Soil Ecol. 39 (2), 172, 2008.
  • 29. ZHANG J., SALAHUDDIN, JI L., YANG L.X., WANG H.R., YOU L.X. Effects of larch (Larix gmelinii) phenolic acids on Manchurian ash (Fraxinus mandshurica) soil microbial community structure. Allelopathy J. 37 (1), 123, 2016.
  • 30. LI Z.A., PENG S.L., RAE D.J., ZHOU G.Y. Litter decomposition and nitrogen mineralization of soils in subtropical plantation forests of southern China, with special attention to comparisons between legumes and nonlegumes. Plant Soil. 229 (1), 105, 2001.
  • 31. CHEN D., LAN Z., BAI X., GRACE J.B., BAI Y. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. J. Ecol. 101 (5), 1322, 2013.
  • 32. LIANG W., STEINBERGER Y. Temporal changes in nematode community structure in a desert ecosystem. J. Arid Environ. 48 (3), 267, 2001.
  • 33. STEINBERGER Y., LIANG W., SAVKINA E., MESHI T., BARNESS G. Nematode community composition and diversity associated with a topoclimatic transect in a rain shadow desert. Eur. J. Soil Biol. 37 (4), 315, 2001.
  • 34. HUBBARD R.M., STAPE J., RYAN M.G., ALMEIDA A.C., ROJAS J. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecol. Manag. 259 (9), 1714, 2010.
  • 35. GARCIA-PAUSAS J., CASALS P., ROMANYÀ J. Litter decomposition and faunal activity in Mediterranean forest soils: effects of N content and the moss layer. Soil Biol. Biochem. 36 (6), 989, 2004.
  • 36. BRANDT L.A., KING J.Y., MILCHUNAS D.G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biol. 13 (10), 2193, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c9f72a18-c01c-4c82-9458-126c7d2e7026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.