
Colloquium Biometricum 44 

2014, 69−78 

ON THE RELATIVE EFFICIENCY OF SPLIT–SPLIT–PLOT 

DESIGN TO SPLIT–PLOT × SPLIT–BLOCK DESIGN 

Katarzyna Ambroży-Deręgowska, Iwona Mejza, Stanisław Mejza  

Department of Mathematical and Statistical Methods 

Poznań University of Life Sciences 

Wojska Polskiego 28, 60-637 Poznań, Poland 

e-mails: ambrozy@up.poznan.pl, imejza@up.poznan.pl, smejza@up.poznan.pl 

Summary 

In the paper we consider two the most popular in practice designs for three-factorial 

experiments, i.e. split-split-plot (SSP) design and split–plot × split–block (SPSB) design. 

Discussed here models of observations are called randomized-derived models and are strictly 

connected with randomization performed for nested and crossed structures of experimental units. 

Statistical properties result from two different schemes of randomization applied in the 

experiments.  

The aim of the paper is comparing both models with respect to the relative efficiency in 

order to decide which a design is the best for estimation and testing hypotheses for factors and 

interactions between them. The considerations are illustrated with an example involving a winter 

wheat trial. 
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1. Introduction 

In design of three-factorial experiments two experimental designs are the 

most popular, i.e. split-split-plot (SSP) design and split–plot × split–block 
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(SPSB) design. In practice, they are mostly used to orthogonal (complete) 

experiments (here by which we mean that all treatment combinations occur once 

in each block). Design of such experiments, modelling and statistical analysis, 

for both the complete designs and incomplete designs, were discussed in many 

papers (e.g. Ambroży i Mejza. 2003, 2004, 2006, 2008a, 2008b, 2009, 2012a, 

2012b, Mejza I., 1997a, 1997b). Models of observations which are presented in 

this paper are called randomized-derived models and are strictly connected with 

nested and crossed structures of experimental units. Statistical properties result 

from the types of randomization schemes applied in the experiments.  

The aim of the paper is comparing both experiments with respect to the 

relative efficiency in order to estimation and testing hypotheses for factors and 

interactions between them. It should be noted that selecting experimental design, 

we follow mainly possibility (or ease) to apply it in practice. Additionally an 

order of factors plays an important role in the experiment. However, economic 

considerations and practical reasons, cannot obscure statistical purposes of the 

designs. This subject was raised also in the papers of Ambroży and Mejza 

(2006, 2008a, 2008b, 2012b). The considerations are illustrated with an example 

involving a winter wheat trial. 

2. Structure of an experimental material 

Consider an s  t  w experiment designed to test the effects of two (s = 2) 

levels of nitrogen fertilization (kg/ha) A1 – 90, A2 – 150 and two (w = 2) 

chemical growth regulators (kg/ha) C1 – 0, C2 – 2 on the grain yields of five  

(t = 5) wheat varieties B1 – Grana, B2 – Dana, B3 – Eka Nowa, B4 – Kaukaz, B5 – 

Mironowskaja 808. So we have v = 20 treatment combinations. The original 

experiment was performed in Słupia Wielka (Poland) on a complete split-plot  

split-block (say, SPSB) design, in three blocks (replications); see Mucha (1975). 

The structure of the experimental material (in this case: of the field) is described 

in 2.1. Then for comparison, the same data were analyzed under a mixed linear 

model as data from a complete split-split-plot (say, SSP) design (see 2.2). All 

analyzes were performed with the help of the STATISTICA package (Ambroży 

and Mejza, 2006, 2012b). 

2.1.  Split-plot  split-block (SPSB) design 

In the SPSB design every block (b = 3) of the experimental material forms  

a row-column design with s (= 2) rows and t (= 5) columns of the first order, 

called I-columns for short. Then each I-column has to be split into w (= 2) 

columns of the second order (called II-columns). In this case, the rows also 
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correspond to the levels of factor A, termed row treatments, the I-columns 

correspond to the levels of factor B, termed I-column treatments, and the  

II-columns are to accommodate the levels of factor C, termed II-column 

treatments. Here, the third factor is in a split-plot design in a relation to the  

I-column treatments (which in turn are in a split-block design with the row 

treatments). 

2.2.  Split-split-plot (SSP) design 

In the SSP design it is assumed that the experimental material can be 

divided into b (= 3) blocks. Every block can be divided into s (= 2) whole plots. 

Then, each whole plot is divided into t (= 5) subplots and then each subplot can 

be divided into w (= 2) sub-subplots. Here the whole plots correspond to the 

levels of factor A (whole plot treatments), the subplots correspond to the levels 

of factor B (subplot treatments), and the sub-subplots are to accommodate the 

levels of factor C (sub-subplot treatments). Hence the third factor is in a split-

plot design in relation to the whole plot and subplot treatment combinations (i.e. 

combinations of the levels of factor A and factor B which are also in a split-plot 

design). 

In both SPSB and SSP designs every block consists of  stw = v = 20 plots 

and the number of observations is equal to n = bstw = 60. 

3. Mixed linear models 

We consider a randomized-derived models of observations of which the 

forms and properties are strictly connected with performed randomization 

processes in the experiment. The randomization schemes used here consist of 

four randomization steps performed independently. Different schemes of 

randomization in the considered designs lead to the following models 

 eDy  


m

f

ff

1

, (3.1) 

where m = 6 for the SPSB design (cf. Ambroży and Mejza, 2003, 2004) and  

m = 4 for the SSP design (Mejza, 1997a, 1997b). The considered models of the 

form (3.1) have the following properties: 
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where   is a known design matrix for v treatment combinations, and   (v1) 

is the vector of fixed treatment combination parameters. According to the 

orthogonal block structure of the considered designs, the covariance matrix 

Cov(y) can be expressed by  

 
mmPPPPy  221100)(Cov , (3.3) 

where 0fγ  and }{ fP  is a family of known pairwise orthogonal matrices 

summing to the identity matrix (cf. Houtman and Speed, 1983). The range space 

of fP  for f = 0, 1,.., m, is termed the f-th stratum of the model, and }{ f  are 

unknown strata variances. They are some functions of unknown variance 

components resulting from the suitable for the design scheme of randomization. 

In the SPSB they are:  

 
2

0 e ,   
22

11 estw  ,    
22

22 etw  ,    

 
22

33 esw  ,    
22

44 es  ,   (3.4) 

 
22

55 ew  ,    
22

6 e6 ,    

where 
2

f  (f = 1, 2,..., 6) denote variances components of effects of blocks, 

rows, columns I, columns II, whole plots and subplots, respectively and 
2

e  

means a variance component of a technical error. 

In the SSP design they are: 

2

0 e ,   
22

11 estw  ,     

 
22

22 etw  ,   
22

33 ew  ,   
22

44 e ,   (3.5) 

where 
2

f  (f = 1, 2, 3, 4) denote variance components of effects of blocks, 

whole plots, subplots, sub-subplots, respectively and 
2

e  means a variance 

component of a technical error. 

Models (3.1) can be analyzed using the methods developed for multistratum 

experiments (see, e.g., Ambroży and Mejza, 2006). 
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4. Relative efficiency and empirical relative efficiency 

Definition 4.1. Let 1  and 2  denote any experimental designs, then the 

relative efficiency of 1  and 2  is defined as (see Yates, 1935) 
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Var
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,  (4.1) 

where 1Var  and 2Var  denote the variances of the same contrast in the 

respective designs. 

The relative efficiency as defined in (4.1) depends on the true stratum 

variances }{ f  of the designs, which are usually unknown. Moreover, the 

stratum variances are functions of variance components defined during the 

randomization processes. Relations among them allow comparison of the 

efficiencies of the considered designs. Usually the same relations occur among 

estimates of the stratum variances (except for sampling errors). Comparing 

efficiency of the SSP design in relation to efficiency of the SPSB design for an 

estimation of contrasts, in some cases we can use the measure defined in (4.1), 

but in others we should take into account the estimation of the RE, called 

empirical relative efficiency, which we shall denote by ERE (see (4.2)). 

Following Yates (1935) we consider uniformity trials, that is, trials with 

dummy treatments, with  b blocks and experimental units in each block (see 

also, Hinkelmann and Kempthorne, 2008). The ANOVA tables for data with 

structures corresponding to SPSB design and SSP design, are given in Table 1 

and Table 2, respectively. 

Definition 4.2. Empirical relative efficiency (ERE) is defined as follows:  

(cf.  Shieh and Jan, 2004; Wang and Hering, 2005) 
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where  - ˆ
f estimates of variance components in the SSP and SPSB designs (see 

Tables 1–2), ,CBACBCABACBA KKKKKKKKh  

where }1,...,2,1:{  vhhK and CBACBCABACBA KKKKKKK  ,,,,,,  
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denote sets of numbers of orthogonal contrasts connected with main effects and 

different types of interaction effects of the factors A, B, C  and mf  ,...,21, ,  

m'f  ,...,2,1 . 

Table 1.  ANOVA for dummy experiment in the SPSB design 

Source D.f. Mean Square 

 (1)  Blocks b – 1 
1̂  =  MSE1 

 (2)  Rows b(s – 1) 
2̂  =  MSE2 

 (3)   I-columns b(t – 1) 3̂  =  MSE3 

 (4)  II-columns bt(w – 1) 
4̂  =  MSE4 

 (5)  Whole plots b(s – 1)(t – 1) 5̂  =  MSE5 

 (6)  Subplots bt(s – 1)(w – 1) 6̂  =  MSE6 

Total n – 1  

 

Table 2. ANOVA for dummy experiment in the SSP design 

 Source D.f. Mean Square 

 (1)  Blocks b –1 
1̂  =  MSE1 

 (2)  Whole plots b(s – 1) 
2̂  =  MSE2 

 (3)  Subplots bs(t – 1) 
3̂  =  MSE3 

 (4)  Sub-subplots bst(w – 1) 
4̂  =  MSE4 

Total n – 1  

Following Ambroży and Mejza (2006, 2008b) and from (3.4) - (3.5) it can 

be assumed (except for sampling errors) that the estimates of variance 

components f̂  in the designs satisfy the following inequalities: 

for SPSB design:  
6521
ˆˆˆˆ    and  

65431
ˆˆˆˆˆ  , 

for SSP design:   
4321
ˆˆˆˆ  .   (4.3) 

Additionally, it can be expected that the appropriate stratum variances, and 

hence also their estimates, in the designs will be identical (to some extent), i.e. 
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SPSB

1̂  = 
SSP

1̂ ,      
SPSB

2̂  =  
SSP

2̂  (4.4) 

It should be pointed out that 
SPSB

1̂  =  
SSP

1̂ , if the designs are complete (as 

for instance in this paper). Then, it can be shown that the subplot error and the 

sub-subplot error in the SSP design is a weighted average between the two 

errors in the SPSB design, i.e.  

 
SPSB

5̂  < 
SSP

3̂ < 
SPSB

3̂ ,        
SPSB

6̂  < 
SSP

4̂ < 
SPSB

4̂ . (4.5) 

5.  Analysis using the STATISTICA software package 

In Tables 3 and 4 given below we present STATISTICA output for a mixed 

model analyses of the grain yields of wheat. The effects of blocks are defined as 

random effects and the remaining effects are fixed (except of the errors). 

Table 3.  ANOVA for the complete SPSB design 

 

Source
Effect SS DF MS F p

Blocks

A

Error (2)

B

Error (3)

C

B x C

Error (4)

A x B

Error (5)

A x C

A x B x C

Error (6)

Random 165.9523 2 82.9762

Fixed 302.8507 1 302.8507 102.45 0.0096

Random 5.9123 2 2.9562

Fixed 493.6123 4 123.4031 47.09 0.0000

Random 20.9627 8 2.6203

Fixed 216.6000 1 216.6000 174.10 0.0000

Fixed 58.1717 4 14.5429 11.69 0.0000

Random 12.0186 10 1.2019

Fixed 28.7510 4 7.1878 3.13 0.0794

Random 18.3660 8 2.2958

Fixed 2.0907 1 2.0907 2.12 0.1763

Fixed 13.6743 4 3.4186 3.46 0.0506

9.8750 10 0.9875
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Table 4. ANOVA for the complete SSP design 

 

6.  Results and conclusions 

The relations (4.3)–(4.5) were applied to examine the empirical relative 

efficiency of the complete SSP and SPSB designs for an estimation of the 

orthogonal contrasts associated with the main and interaction effects of the 

factors. 

1) For estimation of the contrasts associated with the main effects of factor A 

(Nitrogen fertilization) both considered designs are equally effective  
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2) The SSP design is more effective than the SPSB design for estimation of 

the contrasts associated with the main effects of factor B 
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 where   h  KB. 

3) The SSP design is less effective than SPSB design for estimation of the 

interaction contrasts of type A  B 
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 where h  KA  B, f = 4, 5. 

Source
Effect SS DF MS F p

Blocks

A

Error (2)

B

A x B

Error (3)

C

A x C

B x C

A x B x C

Error (4)

Random 165.9523 2 82.9762

Fixed 302.8507 1 302.8507 102.45 0.0096

Random 5.9123 2 2.9562

Fixed 493.6123 4 123.4031 50.20 0.0000

Fixed 28.7510 4 7.1878 2.92 0.0545

Random 39.3287 16 2.4580

Fixed 216.6000 1 216.6000 197.87 0.0000

Fixed 2.0907 1 2.0907 1.91 0.1822

Fixed 58.1717 4 14.5429 13.29 0.0000

Fixed 13.6743 4 3.4186 3.12 0.0378

21.8933 20 1.0947
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4) The SPSB design is more effective than the SSP design in estimation of the 

interaction contrasts of types A  C and A  B  C 
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 where h  KA  C   KA  B  C. 

5) The SSP design is more effective than the SPSB design for estimation of 

the contrasts associated with the main effects of factor C and the interaction 

effects of type B  C 
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  where h  KC   KB  C. 

A summary of the conclusions given above is presented in Table 5. The symbols 

a, b are used to denote efficiency levels in descending order. 

Table 5.  Comparing of the efficiency of the SSP design and SPSB design in the estimation of 

some groups of contrasts 

Sources SSP SPSB 

A a a 

B a b 

A  B b a 

C a b 

A  C b a 

B  C a b 

A  B  C b a 
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