PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 59 | 3 |

Tytuł artykułu

The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The red fox (Vulpes vulpes) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002–2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

Wydawca

-

Czasopismo

Rocznik

Tom

59

Numer

3

Opis fizyczny

p.367-376,fig.,ref.

Twórcy

autor
  • Mammal Research Institute, Polish Academy of Sciences, 17-230 Bialowieza, Poland
  • Mammal Research Institute, Polish Academy of Sciences, 17-230 Bialowieza, Poland
  • School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
autor
  • Mammal Research Institute, Polish Academy of Sciences, 17-230 Bialowieza, Poland
autor
  • Mammal Research Institute, Polish Academy of Sciences, 17-230 Bialowieza, Poland
autor
  • Mammal Research Institute, Polish Academy of Sciences, 17-230 Bialowieza, Poland
autor
  • Mammal Research Institute, Polish Academy of Sciences, 17-230 Bialowieza, Poland

Bibliografia

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modeling as a functional landscape model. Landsc Urban Plan 64:233–247
  • Baker PJ, Dowding CV, Molony SE, White PCL, Harris S (2007) Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav Ecol 18:716–724
  • Biek R, Real LA (2010) The landscape genetics of infectious disease emergence and spread. Mol Ecol 19:3515–3531. doi:10.​1111/​j.​1365-294X.​2010.​04679.​x Central
  • Bonnet E, Van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12
  • Bourhy H, Kissi B, Audry L, Smreczak M, Sadkowska-Todys M, Kulonen K, Tordo N, Zmudzinski JF, Holmes EC (1999) Ecology and evolution of rabies virus in Europe. J Gen Virol 80:2545–2557
  • Briner T, Favre N, Nentwig W, Airoldi JP (2007) Population dynamics of Microtus arvalis in a weed strip. Mamm Biol 72:106–115. doi:10.​1016/​j.​mambio.​2006.​07.​006
  • Chautan M, Pontier D, Artois M (2000) Role of rabies in recent demographic changes in red fox (Vulpes vulpes) populations in Europe. Mammalia 64:391–410. doi:10.​1515/​mamm.​2000.​64.​4.​391
  • Cliquet F, Robardet E, Must K, Laine M, Peik K, Picard-Meyer E, Guiot AL, Niin E (2012) Eliminating rabies in Estonia. Bioscience 6:e1535
  • Côté H, Garant D, Robert K, Mainguy J, Pelletier F (2012) Genetic structure and rabies spread potential in raccoons: the role of landscape barriers and sex-biased dispersal. Evol Appl 5:393–404. doi:10.​1111/​j.​1752-4571.​2012.​00238.​x Central
  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602
  • De Young RW, Zamorano A, Mesenbrink BT, Campbell TA, Leland BR, Moore GM, Honeycutt RL, Root JJ (2009) Landscape-genetic analysis of population structure in the Texas gray fox oral rabies vaccination zone. J Wildl Manag 73:1292–1299. doi:10.​2193/​2008-336
  • Deplazes P, Hegglin D, Gloor S, Romig T (2004) Wilderness in the city: the urbanization of Echinococcus multilocularis. Trends Parasitol 20:77–84
  • Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1:269–271
  • Earl DA, Von Holdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.​1007/​s12686-011-9548-7
  • Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95:7–15. doi:10.​1038/​sj.​hdy.​6800680
  • Etherington TR (2011) Python based GIS tools for landscape genetics: visualising genetic relatedness and measuring landscape connectivity. Methods Ecol Evol 2:52–55
  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567
  • Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362
  • Gachot-Neveu H, Lefevre P, Roeder J-J, Henry C, Poulle ML (2009) Genetic detection of sex-biased and age-biased dispersal in a population of wild carnivore, the red fox, Vulpes vulpes. Zool Sci 26:145–152. doi:10.​2108/​zsj.​26.​145
  • Galov A, Sindicic M, Andreanszky T, Curkovic S, Dezdek D, Slavica A, Hartl GB, Krueger B (2014) High genetic diversity and low population structure in red foxes (Vulpes vulpes) from Croatia. Mamm Biol 79:77–80
  • Gauffre B, Estoup A, Bretagnolle V, Cosson JF (2008) Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol 17:4619–4629. doi:10.​1111/​j.​1365-294X.​2008.​03950.​x
  • Goszczyński J (1986) Diet of foxes and martens in central Poland. Acta Theriol 31:491–506
  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://​www2.​unil.​ch/​popgen/​softwares/​fstat.​htm. Updated from Goudet (1995)
  • Holmala K, Kauhala K (2006) Ecology of wildlife rabies in Europe. Mammal Rev 36:17–36. doi:10.​1111/​j.​1365-2907.​2006.​00078.​x
  • Holmala K, Kauhala K (2009) Habitat use of medium-sized carnivores in southeast Finland-key habitats for rabies spread? Ann Zool Fenn 46:233–246
  • Holmes NG, Dickens HF, Parker HL (1995) Eighteen canine microsatellites. Anim Genet 26:132–133
  • Jacobs J (1974) Quantitative measurements of food selection; a modification of the forage ratio and Ivlev’s selectivity index. Oecologia 14:413–417
  • Jamrozy G (2008) Carnivores, even-toed ungulates, lagomorphs and large rodents in Polish national parks. Ann Zool Fenn 45:299–307
  • Janko C, Schröder W, Linke S, König A (2012) Space use and resting site selection of red foxes (Vulpes vulpes) living near villages and small towns in Southern Germany. Acta Theriol 57:245–250
  • Jędrzejewska B, Jędrzejewski W (1998) Predation in vertebrate communities: the Białowieża Primeval Forest as a case study. Springer, Berlin
  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.​1093/​bioinformatics/​btn129
  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi:10.​1111/​j.​1365-294X.​2008.​03887.​x
  • Kalinowski ST (2006) HW-QUICKCHECK: an easy-to-use computer program for checking genotypes for agreement with Hardy-Weinberg expectations. Mol Ecol Notes 6:974–979. doi:10.​1111/​j.​1471-8286.​2006.​01456.​x
  • Kauhala K, Holmala K (2006) Contact rate and risk of rabies spread between medium-sized carnivores in southeast Finland. Ann Zool Fenn 43:348–357
  • Kauhala K, Kowalczyk R (2011) Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonisation, features behind its success, and threats to native fauna. Current Zoology 57:584–598
  • Kidawa D, Kowalczyk R (2011) The effects of sex, age, season and habitat on diet of the red fox Vulpes vulpes in north-eastern Poland. Acta Theriol 56:209–218. doi:10.​1007/​s13364-011-0031-3 Central
  • Klug PE, Wisely SM, With KA (2011) Population genetic structure and landscape connectivity of eastern yellowbelly racer (Coluber constrictor flaviventris) in the contiguous tallgrass prairie of northeastern Kansas, USA. Landsc Ecol 26:281–294. doi:10.​1007/​s10980-010-9554-2
  • Legendre P, Fortin MJ (2010) Comparison of the Mantel tests and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844
  • MacDonald DW, Reynolds JC (2008) Vulpes vulpes. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <www.​iucnredlist.​org>
  • Magory Cohen T, King R, Dolev A, Boldo A, Lichter-Peled A, Bar-Gal GK (2012) Genetic characterization of populations of the golden jackal and the red fox in Israel. Conserv Genet 14:55–63. doi:10.​1007/​s10592-012-0423-1
  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. doi:10.​1016/​S0169-5347(03)00008-9
  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220
  • Martins WS, Lucas DC, Neves KF, Bertioli DJ (2009) WebSat—a web software for microsatellite marker development. Bioinformation 3:282–283 Central
  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983
  • McDevitt AD, Oliver MK, Piertney SB, Szafrańska PA, Konarzewski M, Zub K (2013) Individual variation in dispersal associated with phenotype influences fine-scale genetic structure in weasels. Conserv Genet 14:499–509
  • Meirmans PG, van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi:10.​1111/​j.​1471-8286.​2004.​00770.​x
  • Moore M, Brown S, Sacks BN (2010) Thirty-one short red fox (Vulpes vulpes) microsatellite markers. Mol Ecol Resour 10:404–408
  • Oishi T, Uraguchi K, Takahashi K, Masuda R (2010) Population structures of the red fox (Vulpes vulpes) on the Hokkaido Island, Japan, revealed by microsatellite analysis. J Hered 102:38–46. doi:10.​1093/​jhered/​esq091
  • Ostrander EA, Sprague GF Jr, Rine J (1993) Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in the dog. Genomics 16:207–213
  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi:10.​1093/​bioinformatics/​bts460 Central
  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195
  • Pérez-Espona S, Pérez-Barbería FJ, Mcleod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996. doi:10.​1111/​j.​1365-294X.​2007.​03629.​x
  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 Central
  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225
  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F statistics under isolation by distance. Genetics 145:1219–1228 Central
  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Notes 8:103–106. doi:10.​1111/​j.​1471-8286.​2007.​01931.​x
  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602. doi:10.​1111/​j.​1471-8286.​2006.​01378.​x
  • Shafer ABA, Northrup JM, White KS, Boyce MS, Côte SD, Coltman DW (2012) Habitat selection predicts genetic relatedness in an alpine ungulate. Ecology 93:1317–1329
  • Shibuya H, Collins BK, Huang THM, Johnson GS (1994) A polymorphic (AGGAAT)n tandem repeat in an intron of the canine von Willebrand factor gene. Anim Genet 25:132–133. doi:10.​1111/​j.​1365-2052.​1994.​tb00094.​x
  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573. doi:10.​1038/​sj.​hdy.​6885180
  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400. doi:10.​1111/​j.​1365-294X.​2008.​03839.​x
  • Sommer S, McDevitt AD, Balkenhol N (2013) Landscape genetic approaches in conservation biology and management. Conserv Genet 14:249–251. doi:10.​1007/​s10592-013-0473-z
  • Soulsbury CD, Iossa G, Edwards KJ, Baker PJ, Harris S (2007) Allelic dropout from a high-quality DNA source. Conserv Genet 8:733–738. doi:10.​1007/​s10592-006-9194-x
  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591
  • Statham MJ, Rich AC, Lisius SK, Sacks BN (2012) Discovery of a remnant population of Sierra Nevada red fox (Vulpes Vulpes Necator). Northwest Sci 86:122–132. doi:10.​3955/​046.​086.​0204
  • Statham MJ, Trut LN, Sacks BN, Kharlamova AV, Oskina IN, Gulevich RG, Johnson JL, Temnykh SV, Acland GM, Kukekova AV (2011) On the origin of a domesticated species: identifying the parent population of Russian silver foxes (Vulpes vulpes). Biol J Linn Soc Lond 103:168–175. doi:10.​1111/​j.​1095-8312.​2011.​01629.​x Central
  • Talbot B, Garant D, Paquette SR, Mainguy J, Pelletier F (2012) Lack of genetic structure and female-specific effect of dispersal barriers in a rabies vector, the striped skunk (Mephitis mephitis). PLoS One 7:e49736. doi:10.​1371/​journal.​pone.​0049736 Central
  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.​1111/​j.​1471-8286.​2004.​00684.​x
  • Verbeylen G, Bruyn L, Adriaensen F, Matthysen E (2003) Does matrix resistance influence red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landsc Ecol 18:791–805
  • Wandeler P, Funk SM, Largiader CR, Gloor S, Breitenmoser U (2003) The city-fox phenomenon: genetic consequences of a recent colonization of urban habitat. Mol Ecol 12:647–656
  • Weckworth BV, Musiani M, DeCesare NJ, McDevitt AD, Hebblewhite M, Mariani S (2013) Preferred habitat and effective population size drive landscape genetic patterns in an endangered species. P Roy Soc B-Biol Sci 280:20131756
  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
  • Wright S (1943) Isolation by distance. Genetics 28:114–138 Central

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c9a617d7-2d4e-41b9-97cc-0c2344c02e38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.