PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |
Tytuł artykułu

Experimental investigation into disturbance of Ca-Mg equilibrium and consequences for charophytes afteri iron and aluminium coagulants application

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iron sulphate and polyaluminum chloride are commonly used in water restoration to eliminate cyanobacteria bloom and improve water quality. Nevertheless, the influence of coagulants on water organisms remains insufficiently studied. The study involves the analysis of phosphate coagulants’ impact on calcium and magnesium concentrations in the Chara hispida community. The experiments were carried out in field mesocosms. Both coagulants were applied once in three different doses: 50.0, 100.0, and 200.0 cm³·m⁻³. The application of coagulants caused a decrease of pH and calcium carbonate and magnesium carbonate dissolution. Although the changes were proportional to the coagulant concentrations, the aluminum coagulant triggered more considerable disturbances. The highest dose of iron sulphate caused the precipitation of hardly soluble calcium sulphate and the elimination of part of calcium from biological circulation. The concentrations of magnesium in water increased only at pH <4.5 following the application of the highest dose of polyaluminum chloride. Shifts in the Ca-Mg equilibrium, which result in the disturbance of biogenic calcification, may affect charophyte metabolism and lead to the elimination of charophyte communities. Therefore, inactivation treatments using acidic coagulants in lakes with charophyte communities ought to be preceded by preliminary studies in order to determine the least harmful dosage for the ecosystem.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
28
Numer
3
Opis fizyczny
p.1887-1895,fig.,ref.
Twórcy
autor
  • Department of Water Protection, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
autor
  • Department of Water Protection, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
  • Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
Bibliografia
  • 1. BAKKER E.S., SARNEEL J.M., GULATI R.D., LIU Z., VAN DONK E. Restoring macrophyte diversity in shallow temperate lakes: Biotic versus abiotic constraints. Hydrobiologia 710 (1), 23, 2013.
  • 2. ASAEDA T., SENAVIRATHNA M.D.H.J., KANEKO Y., RASHID M.H. Effect of calcium and magnesium on the growth and calcite encrustation of Chara fibrosa. Aquat. Bot. 113, 100, 2014.
  • 3. KUFEL L., KUFEL I. Chara beds acting as nutrient sinks in shallow lakes – a review. Aquat. Bot. 72 (3-4), 249, 2002.
  • 4. LI J.Y., DENG K.Y., HESTERBERG D., XIA Y.Q., WU C.X., XU, R.K. Mechanisms of enhanced inorganic phosphorus accumulation by periphyton in paddy fields as affected by calcium and ferrous ions. Sci. Total Environ. 609, 466, 2017.
  • 5. URBANIAK J. Estimation of carbonate and element content in Charophytes – methods of determination. Pol. J. Environ. Stud. 19 (2), 413, 2010.
  • 6. GĄBKA M. Charophytes of the Wielkopolska Region (NW Poland): Distribution, taxonomy and autecology. Bogucki Sci. Press: Poznań, Poland, pp. 1-33, 2009.
  • 7. PUKACZ A., PEŁECHATY M., PEŁECHATA A. The relation between charophytes and habitat differentiation in temperate lowland lakes. Pol. J. Ecol. 61 (1), 105, 2013.
  • 8. SOBCZYŃSKI T., JONIAK T. The variability and stability of water chemistry in deep temperate lake: Results of longterm study of eutrophication. Pol. J. Environ. Stud. 22 (1), 227, 2013.
  • 9. ROSIŃSKA J., KOZAK A., DONDAJEWSKA R., GOŁDYN R. Cyanobacteria blooms before and during the restoration process of a shallow urban lake. J. Environ. Manage. 198 (1), 340, 2017.
  • 10. DUNALSKA J.A., GROCHOWSKA J., WIŚNIEWSKI G., NAPIÓRKOWSKA-KRZEBIETKE A. Can we restore badly degraded urban lakes? Ecol. Eng. 82, 432, 2015.
  • 11. SOBCZYŃSKI T., JONIAK T., PRONIN E. Assessment of the multi-directional experiment of restoration of Lake Góreckie (western Poland) with particular focus to oxygen and light conditions: first results. Pol. J. Environ. Stud. 21 (4), 1025, 2012.
  • 12. DUNALSKA J.A., WIŚNIEWSKI G. Can we stop the degradation of lakes? Innovative approaches in lake restoration. Ecol. Eng. 95, 714, 2016.
  • 13. ZAMPARAS M., ZACHARIAS I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total Environ. 496, 551, 2014.
  • 14. FRAME J.L., JONES J.I., ORMEROD S.J., SADLER J.P., LEDGER M.E. Biological barriers to restoration: testing the biotic resistance hypothesis in an upland stream recovering from acidification. Hydrobiologia 777 (1), 161, 2016.
  • 15. KLIMASZYK P., RZYMSKI P., PIOTROWICZ R., JONIAK T. Contribution of surface runoff from forested areas to the chemistry of a through-flow lake. Environ. Earth Sci. 73 (8), 3963, 2015.
  • 16. RAVEN J.A., SMITH F.A., WALKER N.A. Biomineralization in the Charophyceae sensu lato. In Biomineralization in lower plants and animals; Leadbeater B.S.C., Riding R., Eds., Oxford University Press: Oxford, United Kingdom, pp. 400, 1986.
  • 17. KUFEL L., STRZAŁEK M., BIARDZKA E. Site- and species-specific contribution of charophytes to calcium and phosphorus cycling in lakes. Hydrobiologia 767 (1), 185, 2016.
  • 18. CICERONE D.S., STEWART A.J., ROH Y. Diel cycles in calcite production and dissolution in a eutrophic basin. Environ. Toxicol. Chem. 18 (10), 2169, 1999.
  • 19. KAWAHATA C., YAMAMURO M., SHIRAIWA Y. Changes in alkaline band formation and calcification of corticated charophyte Chara globularis. Springer Plus 2, 85, 2013.
  • 20. SOULIÉ-MÄRSCHE I., GARCÍA A. Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales). Aquat. Bot. 120, 7, 2015.
  • 21. COLETTA P., PENTECOST A., SPIRO B. Stable isotopes in charophyte incrustations: relationships with climate and water chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 173 (1-2), 9, 2001.
  • 22. WANG H., NI L., YU D. Significance of HCO³⁻ alkalinity in calcification and utilization of dissolved inorganic carbon in Chara vulgaris. Aquat. Biol. 26, 169, 2017.
  • 23. IMMERS A.K., VENDRIG K., IBELINGS B.W., VAN DONK E., TER HEERDT G.N.J., GEURTS J.J.M., BAKKER E.S. Iron addition as a measure to restore water quality: Implications for macrophyte growth. Aquat. Bot. 116, 44, 2014.
  • 24. RYBAK M., JONIAK T., GĄBKA M., SOBCZYŃSKI T. The inhibition of growth and oospores production in Chara hispida L. as an effect of iron sulphate addition: conclusions for the use of iron coagulants in lake restoration. Ecol. Eng. 105, 1, 2017.
  • 25. URBANIAK J. Analysis of morphological characters of Chara baltica, C. hispida, C. horrida, and C. rudis from Europe. Plant Syst. Evol. 286 (3), 209, 2010.
  • 26. URBANIAK J., GĄBKA M. Polish Charophytes: An illustrated guide to identification. Wrocław Univ. Press: Wrocław, Poland, pp. 60-61, 2014.
  • 27. ANDREWS M., BOX R., MC INROY S., RAVEN J.A. Growth of Chara hispida. II. Shade adaptation. J. Ecol. 72 (3), 885, 1984.
  • 28. ROSIŃSKA J., KOZAK A., DONDAJEWSKA R., KOWALCZEWSKA-MADURA R., GOŁDYN R. Water quality response to sustainable restoration measures – Case study of urban Swarzędzkie Lake. Ecol. Indic. 84, 437, 2018.
  • 29. BAKKER E.S., VAN DONK E., IMMERS A.K. Lake restoration by in-lake iron addition: a synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquat. Ecol. 50 (1), 121, 2016.
  • 30. ORIHEL D.M., SCHINDLER D.W., BALLARD N.C., WILSON L.R., VINEBROOKE R.D. Experimental iron amendment suppresses toxic cyanobacteria in a hypereutrophic lake. Ecol. Appl. 26 (5), 1517, 2016.
  • 31. PEŁECHATY M., PUKACZ A., APOLINARSKA K., PEŁECHATA A., SIEPAK M. The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60 (4), 1017, 2013.
  • 32. DE MONTETY V., MARTIN J.B., COHEN M.J., FOSTER C., KURZ M.J. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river. Chem. Geol. 283 (1-2), 31, 2011.
  • 33. PUKACZ A., PEŁECHATY M., FRANKOWSKI M., KOWALSKI A., ZWIJACZ-KOSZAŁKA K. Seasonality of water chemistry, carbonate production, and biometric features of two species of Chara in a shallow clear water lake. Sci. World J. 167631, 2014.
  • 34. EDEL K.H., MARCHADIER E., BROWNLEE C., KUDLA J., HETHERINGTON A.M. The evolution of calcium-based signalling in plants. Curr. Biol. 27 (13), R667, 2017.
  • 35. GOMES P.I.A., ASAEDA T. Impact of calcium and magnesium on growth and morphological acclimations of Nitella: implications for calcification and nutrient dynamics. Chem. Ecol. 26 (6), 479, 2010.
  • 36. PUKACZ A., PEŁECHATY M., FRANKOWSKI M. Depth-dependence and monthly variability of charophyte biomass production: consequences for the precipitation of calcium carbonate in a shallow Chara-lake. Environ. Sci. Pollut. Res. 23, 22433, 2016.
  • 37. SIDDIQUI M.H., AL-WHAIBI M.H., SAKRAN A.M., BASALAH M.O., ALI H.M. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Int. J. Mol. Sci. 13 (6), 6604, 2012.
  • 38. RYBAK M., JONIAK T., GĄBKA M., SOBCZYŃSKI T., RATAJCZAK I. Ecological implications the use of chemical methods in lakes restoration: Impact of aluminium coagulants on stoneworts. In Materials of International Multidisciplinary Scientific GeoConference-SGEM 2, 271, 2016.
  • 39. RYBAK M., KOŁODZIEJCZYK A., JONIAK T., RATAJCZAK I., GĄBKA M. Bioaccumulation and toxicity studies of macroalgae (Charophyceae) treated with aluminium: Experimental studies in the context of lake restoration. Ecotoxicol. Environ. Saf. 145, 359, 2017.
  • 40. MÜLLER G., IRION G., FÖRSTNER U. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59 (4), 158, 1972.
  • 41. SIONG K., ASAEDA T. Effect of magnesium on charophytes calcification: implications for phosphorus speciation stored in biomass and sediment in Myall Lake (Australia). Hydrobiologia 632 (1), 247, 2009.
  • 42. VYMAZAL J. Algae and element cycling in wetlands. CRC Press, 1994.
  • 43. VAN DER WELLE M.E.W., CUPPENS M., LAMERS L.P.M., ROELOFS J.G. Detoxifying toxicants: interactions between sulphide and iron toxicity. Environ. Toxicol. Chem. 25 (6), 1592, 2006.
  • 44. LAMERS L.P.M., GOVERS L.L., JANSSEN I.C.J.M., GEURTS J.J.M., VAN DER WELLE M.E.W., VAN KATWIJK M.M., VAN DER HEIDE T., ROELOFS J.G.M., SMOLDERS A.J.P. Sulfide as a soil phytotoxin - a review. Front. Plant Sci. 4, 268, 2013.
  • 45. CIRKEL D.G., VAN BEEK C.G.E.M., WITTE J.P.M., VAN DER ZEE S.E.A.T.M. Sulphate reduction and calcite precipitation in relation to internal eutrophication of groundwater fed alkaline fens. Biogeochemistry 117 (2-3), 375, 2014.
  • 46. PARIHAR P., SINGH S., SINGH R., SINGH V.P., PRASAD S.M. Effect of salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut. Res. 22 (6), 4056, 2015.
  • 47. SANDERS D. Physiological control of chloride transport in Chara corallina: II. The role of chloride as a vacuolar osmoticum. Plant Physiol. 68 (2), 401, 1981.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c98388ab-89aa-4f51-ab73-42bdfd8a4447
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.