EN
Drought is an abiotic stress that strongly influences plant growth, development and productivity. To gain a better understanding of the drought-stress responses at physiological and molecular level in wheat plants (Triticum aestivum cv. KTC86211), we performed a comparative physiological and proteomics analysis. Eight-day-old wheat seedlings were treated with polyethylene glycolsimulated drought stress for 0, 24, 48 and 72 h. Drought treatment resulted in alterations of morphology, increased relative electrolyte leakage and reduced length and weight on leaf and root. Stress-induced proteome changes were analyzed by two-dimensional gel electrophoresis in conjunction with MALDI-TOF/TOF. Twenty-three spots differed significantly between control and treated plants following 48 h of drought stress, with 19 upregulated, and 4 downregulated, in leaf tissues. All of the differentially expressed protein spots were identified, revealing that the majority of proteins altered by drought treatment were involved in reactive oxygen species scavenging enzymes and photosynthesis. Other proteins identified were involved in protein metabolism, cytoskeleton structure, defense response, acid metabolism and signal transduction. All proteins might contribute cooperatively to reestablish cellular homeostasis under drought stress. The present study not only provides new insights into the mechanisms of acclimation and tolerance to drought stress in wheat plants, but also provides clues for improving wheat’s drought tolerance through breeding or genetic engineering.