PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 | 1 |

Tytuł artykułu

Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The inner blood-retinal barrier is a gliovascular unit in which glial cells surround capillary endothelial cells and regulate retinal capillaries by paracrine interactions. During chronic ocular inflammation, microvascular complications can give rise to vascular proliferative lesions, which compromise visual acuity. This pathologic remodelling caused by proliferating Müller cells determines occlusion of retinal capillaries. The aim of the present study was to identify qualitative and quantitative alterations in the retinal capillaries in patients with post-traumatic chronic ocular inflammation or post-thrombotic vascular glaucoma. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in retinal inflammation. Our electron microscopy findings demonstrated that during chronic ocular inflammation, thickening of the basement membrane, loss of pericytes and endothelial cells and proliferation of Müller cells occur with irreversible occlusion of retinal capillaries. Angiogenesis takes place as part of a regenerative reaction that results in fibrosis. We believe that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in the treatment of this disease although further studies are required to confirm these findings. (Folia Morphol 2015; 74, 1: 33–41)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Numer

1

Opis fizyczny

p.33-41,fig.,ref.

Twórcy

autor
  • Department of Sensory Organs, Sapienza University of Rome, V.le del Policlinico 155, 00161 Rome, Italy
  • Bietti Eye Foundation, Rome, Italy
autor
  • Department of Sensory Organs, Sapienza University of Rome, Italy
  • Ophthalmic Neuroscience Program, Nutripharma Hungaria Ltd., Budapest, Hungary
  • Department of Sensory Organs, Sapienza University of Rome, Italy
autor
  • Department of Sensory Organs, Sapienza University of Rome, Italy
autor
  • Department of Ophthalmology, Semmelweiss University of Budapest, Hungary
autor
  • Department of Sensory Organs, Sapienza University of Rome, Italy
autor
  • Department of Sensory Organs, Sapienza University of Rome, Italy
autor
  • Department of Sensory Organs, Sapienza University of Rome, Italy

Bibliografia

  • 1. Abukawa H, Tomi M, Kiyokawa J, Hori S, Kondo T, Terasaki T, Hosoya K (2009) Modulation of retinal capillary endothelial cells by Muller glial cellderived factors. Molecular Vision, 15: 451–457.
  • 2. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol, 113: 1538–1544.
  • 3. Ashton N (1953) Arteriolar involvement in diabetic retinopathy. Br J Ophthalmol, 37: 282–292.
  • 4. Ashton N (1959) Diabetic retinopathy: a new approach. Lancet, 2: 625–630.
  • 5. Ashton N (1965) The blood-retinal barrier and vaso-glial relationships in retinal disease. Trans Ophthal, 85: 199–230.
  • 6. Ashton N (1970) Pathophysiology of retinal cotton wool spots. Br Med Bull, 26: 143–150.
  • 7. Baglole CJ, Ray DM, Bernstein SH, Feldon SE, Smith TJ, Sime PJ, Phipps RP (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest, 35: 297–325.
  • 8. Bamforth SD, Lightman SL, Greenwood J (1997) Interleukin-1-induced disruption of the retinal vascular barrier of the central nervous system is mediated through leukocyte recruitment and histamine. Am J Pathol, 150: 329–340.
  • 9. Bamforth SD, Lightman SL, Greenwood J (1997) Ultrastructural analysis of interleukin-1/j-induced leukocyte recruitment to the rat retina. Investigative Ophthalmol Visual Science, 38: 25–35.
  • 10. Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Incest Ophthalmol Vis Sci, 42: 853–859.
  • 11. Ben-Av P, Crofford LJ, Wilder RL, Hla T (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett, 372: 83–87.
  • 12. Bianchi E, Scarinci F, Grande C, Plateroti R, Plateroti P, Plateroti AM, Fumagalli L, Capozzi P, Feher J, Artico M (2012) Immunohistochemical profile of VEGF, TGF-beta and PGE2 in human pterygium and normal conjunctiva: experimental study and review of the literature. Int J Immunopathol Pharmacol, 25: 607–615.
  • 13. Bianchi E, Scarinci F, Ripandelli G, Feher J, Pacella E, Magliulo G, Gabrieli CB, Plateroti R, Plateroti P, Mignini F, Artico M (2013) Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis. Int J Mol Med, 31: 232–242.
  • 14. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res, 25: 397–424.
  • 15. Carmo A, Cunha-Vaz JG, Carvalho AP, Lopes MC (1999) L-arginine transport in retinas from streptozotocin diabetic rats: correlation with the level of IL-1beta and NO synthase activity. Vision Res, 39: 3817–3823.
  • 16. Cavallotti C, Artico M, Pescosolido N, Leali FM, Feher J (2004) Age-related changes in the human retina. Can J Ophthalmol, 39: 61–68.
  • 17. Choi EY, Santoso S, Chavakis T (2009) Mechanisms of neutrophil transendothelial migration. Front Biosci, 14: 1596–1605.
  • 18. Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. Diabetic retinopathy. Arch Ophthalmol, 66: 366–378.
  • 19. Cunha-Vaz JG (1976) The blood-retinal barriers. Doc Ophthalmol, 41: 287–327.
  • 20. Dawson DW, Volpert OV, GillisP, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science, 285: 245–258.
  • 21. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood, 87: 2095–2147.
  • 22. Eichler W, Yafai Y, Keller T, Wiedemann P, Reichenbach A (2004) PEDF derived from glial Müller cells: a possible regulator of retinal angiogenesis. Exp Cell Res, 299: 68–78.
  • 23. Feher J1, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging, 27: 983–993.
  • 24. Gao G, Li Y, Gee S, Dudley A, Fant J, Crosson C Ma J-X (2002) Downregulation of VEGF and up-regulation of PEDF: a possible mechanism for the antiangiogenic activity of plasminogen kringle 5. J. Biol. Chem, 277: 9492–9497.
  • 25. Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J (2001) Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett, 489: 270–276.
  • 26. Gerhardinger C, Biarne’s Costa M, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. IOVS, 46: 349–357.
  • 27. Hanisch U-K (2002) Microglia as a source and target of cytokines. Glia, 40: 140–155.
  • 28. Hockley DJ, Tripathi RC, Ashton N (1979) Experimental retinal branch vein occlusion in rhesus monkeys. III. Hispopathological and electron microscopical studies. Br J Ophthalmol, 63: 393–411.
  • 29. Jouseen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP (2001) Leucocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol, 158: 147–152.
  • 30. Joussen AM, Poulaki V, Mitsiades N, Kirchhof B, Koizumi K, Dohmen S, Adamis AP (2002) Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J, 16: 438–440.
  • 31. Joussen AM, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2002) Retinal vascular endothelial growth factor induces ontercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol, 160: 501–509.
  • 32. Kaur C, Foulds WS, Ling EA (2008) Blood-retinal barrier in hypoxic ischaemic conditions: basoc concepts, clinical features and management. Progress Retinal Eye Res, 27: 622–647.
  • 33. Kern TS, Engermann RL (2001) Pharmacological inhibition of diabetic retinopathy: aminogluanidine and aspirin. Diabetes, 50: 1636–1642.
  • 34. Liu H, Ren JG, Cooper WL, Hawkins CE, Cowan MR, Tong PY (2004) Identification of the antivasopermeability effect of pigment epithelium-derived factor and its active site. Proc Natl Acad Sci, 101: 6605–6610.
  • 35. Lu M, Perez VL, Ma N, Miyamoto K, Peng HB, Liao JK, Adamis AP (1999) VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci, 40: 1808–1812.
  • 36. Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci, 44: 1211–1220.
  • 37. Miyamoto K, Khosrof S, Bursell SE, Moromizato Y, Aiello LP, Ogura Y, Adamis AP (2000) Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol, 156: 1733–1739.
  • 38. Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y, Adamis AP (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci, 96: 10836–10841.
  • 39. Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y, Adamis AP (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci, 96: 10836–10841.
  • 40. Mohr S (2004) Potential new strategies to prevent the development of diabetic retinopathy. Exp Opin Invest Drugs, 13: 189–198.
  • 41. Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci, 19: 307–312.
  • 42. Ogawa Y, Yamazaki K, Kuwana M, Mashima Y, Nakamura Y, Ishida S, Toda I, Oguchi Y, Tsubota K, Okamoto S, Kawakami Y (2001) A significant role of stromal fibroblasts in rapidly progressive dry eye in patients with chronic GVHD. Invest Ophthalmol Vis Sci, 42: 111–119.
  • 43. Rodella L, Zamai L, Rezzani R, Artico M, Peri G, Falconi M, Facchini A, Pelusi G, Vitale M (2001) Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells. Br J Haematol, 115: 442–450.
  • 44. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology pathology and therapeutic target. Trends Neurosci, 23: 618–625.
  • 45. Ryan GB, Majno G (1977) Acute inflammation. Am J Pathology, 86: 185–276.
  • 46. Schroder S, Palinski W, Schmid-Schonbein GW (1991) Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol, 139: 81–100.
  • 47. Shakib M, Cunha-Vaz JG (1966) Studies on the permeability of the blood-retinal barrier. Junctional complexes of thr retinal vessels and their role on their permeability. Exp Eye Res, 5: 229–234.
  • 48. Sluiter W, Pietersma A, Lamers JM, Koster JF (1993) Leukocyte adhesion molecules on the vascular endothelium: their role in the pathogenesis of cardiovascular disease and the mechanisms underlying their expression. J Cardiovasc Pharmacol, 22: S37–S44.
  • 49. Smith RS, Smith TJ, Blieden TM, Phipps RP (1997) Fibroblasts as sentinel cells: synthesis of chemokines and regulation of inflammation. Am J Pathol, 151: 317–322.
  • 50. Tannous M, Hutnik CM, Tingey DP, Mutus B (2000) S-nitrosoglutathione photolysis as a novel therapy for antifibrosis in filtration surgery. Invest Ophthalmol Vis Sci, 41: 749–755.
  • 51. Tout S, Chan-Ling T, Hollander H, Stone J (1993) The role of Müller cells in the formation of the blood-retinal barrier. Neuroscience, 55: 291–301.
  • 52. Tretiach M, Madigan MC, Wen L, Gillies MC (2005) Effect of Müller cell co-culture on in vitro permeability of bovine retinal vascular endothelium in normoxic and hypoxic conditions. Neurosci Lett, 378: 160–165.
  • 53. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci, 16: 877–885.
  • 54. Vincent JA, Mohr S (2007) Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes, 56: 224–230.
  • 55. Wang J, Xu X, Elliott MH, Zhu M, Le YZ (2010) Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes, 59: 2297–2305.
  • 56. Yafai Y, Iandiev I, Wiedemann P, Reichenbach A, Eichler W (2004) Retinal endothelial angiogenic activity: effects of hypoxia and glial (Müller) cells. Microcirculation, 11: 577–586.
  • 57. Yoshida S, Sotozono C, Ikeda T, Kinoshita S (2001) Interleukin-6 (IL-6) production by cytokine-stimulated human Müller cells. Curr Eye Res, 22: 341–347.
  • 58. Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma J-X (2005) Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. The FASEB J, 1–21.
  • 59. Zoukhri D (2006) Effect of inflammation on lacrimal gland function. Exp Eye Res, 82: 885–898.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c8eac424-7a7e-46f3-977d-db83301278bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.