PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 1 |

Tytuł artykułu

Effect of salt stress caused by deicing on the content of microelements in leaves of linden

Treść / Zawartość

Warianty tytułu

PL
Wpływ stresu solnego spowodowanego zasoleniem gleby na zawartość mikroelementów w liściach lip

Języki publikacji

EN

Abstrakty

EN
Application of large amounts of NaCl to control slippery roads in winter leads to soil salinity and consequently to ionic imbalances, changes in pH, changes in physicochemical properties of the soil and the death of roadside trees. The aim of this study was to evaluate the effect of salt stress on the content of microelements in the leaves of roadside trees and on the health trees. The subject of research were trees of the Crimean linden (Tilia ‘Euchlora’) growing in the median strip of one of the main streets in Warsaw. The roadside trees contained much higher amounts of Cl and Na than trees in a park (control). There was a significant correlation between the Cl and Na content in leaves of the trees and their health state. As the content of these elements increased, the health condition of leaves clearly deteriorated. There was no significant effect of soil salinity on the micronutrient content in leaves. The content of Cu, Fe, Zn and Mn in linden tree leaves were on levels considered normal, with values not indicative of any deficiency or toxicity. The presence of Fe and Zn in leaves had no significant effect on the health of leaves of the trees. A statistically significant negative relationship was found between the index of leaf damage and their content of Cu and Mn. This means that a higher degree of leaf damage corresponded to a lower content of Cu and Mn. Based on regression analysis, it was estimated an increase in the Cl content in soil solution by approximately 1000 mg dm-3 caused an average 0.2% increase in the Cl content in leaves.
PL
Stosowanie dużych ilości NaCl do zwalczania śliskości dróg w okresie zimowym prowadzi do zasolenia gleb, a w konsekwencji do zaburzeń równowagi jonowej, zmian pH oraz zmian właściwości fizykochemicznych gleby i zamierania drzew przyulicznych. Celem badań była ocena wpływu stresu solnego na zawartość mikroelementów w liściach drzew ulicznych i stan zdrowotny drzew. Przedmiotem badań były drzewa lipy krymskiej (Tilia Euchlora) rosnące w pasie międzyjezdniowym głównej ulicy w Warszawie. Drzewa uliczne zawierały znacznie więcej Cl i Na niż drzewa z parku (kontrola). Stwierdzono istotne zależności między zawartością Cl i Na w liściach drzew a ich stanem zdrowotnym. Wraz ze wzrostem zawartości tych pierwiastków wyraźnie pogarszał się stan zdrowotny liści. Nie stwierdzono istotnego wpływu zasolenia gleby na zawartość mikroelementów w liściach. Zawartość Cu, Fe, Zn i Mn w liściach lip była na poziomie uznanym za „normalny”, nie stwierdzono wartości wskazujących na niedobór lub poziom toksyczny. Zawartość Fe oraz Zn w liściach nie miała istotnego wpływu na stan zdrowotny liści drzew. Stwierdzono natomiast ujemne statystycznie istotne zależności między indeksem uszkodzenia liści a zawartością w nich Cu i Mn. Oznacza to, że wraz ze wzrostem stopnia uszkodzenia liści, zmniejszała się zawartość Cu i Mn. Na podstawie analizy regresji oszacowano w przybliżeniu, że zwiększenie zawartości Cl w roztworze glebowym o 1000 mg dm-3 powoduje przeciętne zwiększenie zawartości Cl w liściach o 0,2%.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.65-79,fig.,ref.

Twórcy

  • Botanical Garden-Center for Conservation of Biological Diversity, Polish Academy of Sciences, 2 Prawdziwka St., 02-973 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Warsaw, Poland
  • Botanical Garden-Center for Conservation of Biological Diversity, Polish Academy of Sciences, 2 Prawdziwka St., 02-973 Warsaw, Poland
autor
  • Warsaw University of Life Sciences - SGGW, Warsaw, Poland
autor
  • Warsaw University of Life Sciences - SGGW, Warsaw, Poland
autor
  • Warsaw University of Life Sciences - SGGW, Warsaw, Poland
autor
  • Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Institute of Environmental Protection - National Research Institute, Warsaw, Poland

Bibliografia

  • Akbar K.F., Headley A.D., Hale W.H.G., Athar M. 2006. A comparative study of de-icing salts (Sodium chloride and calcium magnesium acetate) on the growth of some roadside plants of England. J. Appl. Sci Environ. Manage, 10(1): 67-71.
  • Alaoui-Sosse B., Sehmer L., Barnola P. Diezengremel P. 1998. Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., arhythmically growing species. Trees, 12: 424-430.
  • Alfani A., Bartoli G., Rutigliano F.A., Maisto G., De Santoa A.V. 1996. Trace metal biomonitoring in the soil and the leaves of Quercus ilex in the urban area of Naples. Biol. Trace Elem. Res., 51(1): 117-131.
  • Allen, S.E., Grimshaw, H.N., Parkinson, J.A. and Quarmby, C. 1974. Chemical analysis of ecological materials. Blackwell Sci. Pub., Oxford.
  • Altaher H., Dietrich A., Novak J. 2011. Factors affecting copper sorption and mobility through A and B horizon soils from the Eastern Shore of Virginia. Yanbu. J. Eng. Sci.: 91-105.
  • Amrhein C., Strong J.E. 1990. The Effect of deicing salts on trace metal mobility in roadside soils. J. Environ. Qual., 19(4): 765-772.
  • Bach A., Pawłowska B. 2006. Effect of sodium chloride salinity and pH of soil on ornamental urban trees in Kraków with regard to nature conservation in cities. Ecol. Chem. Eng., 13(6): 455-461.
  • Baczewska A.H., Dmuchowski W., Gozdowski D., Brągoszewska P. 2011a. Changes in health status and chemical composition of tree leaves of the Crimean linden in the years 2000 and 2009. Ochr. Środ. Zas. Natur., 49: 84-95.
  • Baczewska A.H., Dmuchowski W., Gozdowski D., Styczek M., Brągoszewska P. 2011b.. The influence of saline stress on the abundance of lime aphid (Eucallipterus tiliae L.) on the leaves of street trees – Crimean linden. Procc. Proc. ECOpole, 5(1): 13-19.
  • Beesley L., Moreno-Jimenez E., Clemente R., Lepp N., Dickinson N. 2010 Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Env. Pollut., 158: 155–160.
  • Berkheimer, S.F., Hanson E. 2006. Deicing salts reduce cold hardiness and increase flower bud mortality of highbush blueberry. J. Am. Soc. Hort. Sci., 131(1): 11-16.
  • Blomqvist G., Johansson E.L. 1999. Airborne spreading and deposition of de-icing salt - a case study. Sci. Total Environ., 235(1-3): 161-169.
  • Brogowski Z., Czarnowska K., Chojnicki J., Pracz J., Zagórski Z. 2000. Effect of saline stress on the chemical state of tree leaves in the city of Lódź. Rocz. Glebozn., 51(1-2): 17-28. (in Polish)
  • Bryson G.M., Barker A.V. 2002. sodium accumulation in soils and plants along massachusetts roadsides. Commun. Soil Sci. Plant Anal., 33(1-2): 67-78.
  • Černohlávková J., Hofman J., Bartoš T., Sáňka M., Anděl P. 2008. Effects of road deicing salts on soil microorganisms. Plant Soil Environ., 54(11): 479-485.
  • Chmielewski W., Dmuchowski W., Supłat S. 1999. Impact of urban environmental pollution on growth, leaf damage and chemical constituents of Warsaw Urban Trees. Proc. of the Int. Symp. on Air Pollution and Climate Change Affects on Forest Ecosystems, Riverside, USA, February 5-9 1996, USDA Forest Service, General Technical Report, PSW-GTR-166:215-220.
  • Czerniawska-Kusza I., Kusza G., Mariusz Dużyński M. 2004. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environ. Toxicol., 19(4): 296-301.
  • Defourny C. 2000. Environmental risk assessment of deicing salts. 8th World Salt Symposium, The Hague, Netherlands, 2:767-770.
  • Dmuchowski W., Baczewska A.H., Brągoszewska P. 2011a. Reaction of street trees to adverse environmental conditions in the centre of Warsaw. Ecol. Quest., 15: 97–105.
  • Dmuchowski W., Badurek M. 2004. Chloride and sodium in the leaves of urban trees in Warsaw in connection to their health condition. Chem. Inż. Ekol., 11(4-5): 297-303.
  • Dmuchowski W., Brogowski Z., Baczewska A.H. 2011b. Evaluation of vigour and health of street trees in Warsaw using the foliar ionic status. Pol. J. Environ. Stud., 20(2): 489-496.
  • Dmuchowski W., Sołtykiewicz E., Woźniak J. 2007. The effect of urban environment on the phenological development of Tilia ‘Euchlora’ trees. Mon. Bot. Garden, 1141-145.
  • Duda J., Włoch W., Bełtowski M., Muszyńska J. 1994. In: Dendrological inventory of team avenue. Wika S., Włoch W. (eds.) Scripta Rudensica, 3: 37-55. (in Polish)
  • Fay L., Shi X. 2012. Environmnetal impacts of chemicals for snow and ice control: state of the knowledge. Water Air Soil Poll., 223(5): 2751-2770.
  • Franklin J.A., Zwiazek J.J. 2004. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate. Physiol. Plant, 120: 482-490.
  • Fritzsche C.J. 1992. Calcium magnesium acetate deicer: An effective alternative for salt-sensitive areas. Water Environ. Technol., 4(1): 44-51.
  • Gałuszka G., Migaszewski Z.M., Podlaski R., Dołęgowska S., Michalik A. 2011. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environ. Monit. Assess, 176(1-4): 451-464.
  • Green S.M., Machin R., Cresser M.S. 2008. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environ Pollut., 152: 20-31.
  • Guthrie D. 2006. Winter Maintenance Depots 24/7: Winter Maintenance in an Urban Environment. APWA Reporter, 73(10): 17-21.
  • Hewitt E.J., Smith T.A. 1974. Plant mineral nutrition. English Universities Press, Norwich. Hofman J., Travnickova E., Andel P. 2012. Road salts effects on soil chemical and microbial properties at grassland and forest site in protected natural areas. Plant Soil Environ., 58(6): 282-288.
  • Kabata-Pendias A., Pendias H. 2001. Trace elements in soils and plants. 3rd ed., CRC Press, Boca Raton, Florida
  • Kochanowska K., Kusza G. 2010. Impact of salinity on selected physical-chemical properties of urban soils in 1994 and 2009 years. Inż. Ekol., 23: 14-21.
  • La Croix, R.L., Keeney, D.R., Walsh, L.M. 1970. Potentiometric titration of chloride in plant tissue extracts using the chloride ion electrode. Soil Sci. Plant Anal., 1(1): 1-6.
  • Łabętowicz J. 1995. The chemical composition of soil solution in different soil conditions and fertilizer. Rozpr. hab., Wyd. Fundacja Rozwój SGGW, Warszawa; 1-103. (in Polish)
  • Lax S., Peterson E.W., 2009. Characterization of chloride transport in the unsaturated zone near salted road. Environ. Geol., 58(5): 1041-1049.
  • Linzon, S.N., Chai, B.L., Temople, P.J., Pearson, R.G. and Smith, M.L. 1976. Lead contamination of urban soils and vegetation by emissions from secondary lead industries. J. Air Pollut. Assoc., 26: 650-655.
  • Łukasik I., Palowski B., Ciepał R. 2002. Lead, cadmium, and zinc contents in soil and in leaves of selected tree and shrub species grown in Urban Parks of Upper Silesia. Chem. Inż. Ekol., 9(4): 431-439.
  • Madejón P., Marañón T., Murillo J.M. 2006. Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Sci. Total Environ., 355: 187-203.
  • Mavi M.S., Marschner P., Chittleborough D.J., Cox J.W., Sanderman J. 2012. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol. Bioch., 45: 8-13.
  • McBean E., Al-Nassri S. 1987. Migration pattern of de-icing salts from road. J. Environ. Manage, 25: 231-238.
  • Munck I.A., Bennett C.M., Camilli K.S., Nowak R.S. 2010. Long-term impact of de-icing salts on tree health in the Lake Tahoe Basin: Environmental influences and interactions with insects and diseases. Forest Ecol. Manag., 260: 1219-1229.
  • Nelson S., Yonge D., Barber M. 2009. Effects of road salts on heavy metal mobility in two Eastern Washington soils. J. Environ. Eng., 135(7): 505-510.
  • Norrström A.C., Bergstedt E. 2001. The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water Air Soil Poll., 127: 281-299.
  • Norrström A.C., Jacks G. 1998.Concentration and fractionation of heavy metals in roadside soils receiving de-icing salts. Sci. Total Environ., 218(2-3): 161-174.
  • Nowotny E.V., Murph D., Stefan H.S. 2008. Increase of urban lake salinity by road deicing salt. Sci. Total Environ., 406(12): 131-44.
  • Oleksyn J., Kloepp el B.D., Łukasiewicz S., Karolewski P., Reich P.B. 2007. Ecophysiology of horse chestnut (Aesculus hippocastanum L.) in degraded and restored urban sites. Pol. J. Ecol., 55(2): 245-260.
  • Pauleit S. 1988. Vitalitätskartierung von Stadtbäume in München. Garten Lands, 7: 38-40.
  • Polanco M.C., Związek J.J., Voicu M.C. 2008. Responses of Ectomycorrhizal American elm (Ulmus americana) seedlings to salinity and soil compaction. Plant Soil, 308: 189-200.
  • Pracz J. 1978. The influence of chemical technologies used in street snow removal on soils and tree vegetation of urban agglomerations. The Institute of Soil Science, SGGW, Warszawa. (in Polish).
  • Ramakrishna, D.M., Viraraghavan T. 2005. Environmental impact of chemical deicersa review. Water Air Soil Poll., 166: 49-63.
  • Roberts D. 1991. ATI Unicam, atomic absorption spectrometry – methods manual. Unicam Samecka-Cymerman A., Kemp ers A.J.,1999. Bioindication of heavy metals in the town Wrocław (Poland) with evergreen plants. Atmos. Environ., 33(3): 419-430.
  • Sander A., Novotny E., Mohseni O. 2007. Inventory of road salt use in the Minneapolis/St. Paul metropolitan area. ST. Anthony Falls Laboratory, University of Minnesota, Project Report No. 503: 1-45.
  • Shortle W.C., Rich A.E. 1970. Relative sodium tolerance of common roadside trees in southeastern New Hampshire. Plant Dis. Rep., 54: 360-362.
  • Smidt S. 1988. Schadstoffe und Nährstoffe in Blattorbanen, Natürliche Gehalte und Grenzwerte. Institut für Immissionsforschung und Forstchemie, Interner Bericht, 3: 1-18.
  • Sokal R.R., Rohlf F.J. 1995. Biometry: the principles and practice of statistics in biological research. W.H. Freeman and company, New York.
  • Tahkokorpi M., Taulavuori E., Laine, K.; Taulavuori K. 2012. Severe salt stress in Vaccinium myrtillus (L.) in response to Na+ ion toxicity. Environ. Exp. Bot., 76: 49-53.
  • Thunqvist E.L. 2004. Regional increase of mean chloride concentration in water due to the application of deicing salt. Sci. Total Environ., 325(1-3): 29–37.
  • Torri S.I., Corrêa R.S. 2012. Downward movement of potentially toxic elements in biosolids amended soils. Appl. Environ. Soil Sci., Article ID 145724, 7 pagesdoi: 10.1155/2012/145724.
  • Violante A., Cozzolino V., Perelomov L., Caporale A.G., Pigna. M. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil. Sci. Plant Nutr., 10 (3): 268-292.
  • Wolt J.D., Graveel J. 1986. A rapid routine method for obtaining soil solution using vacuum displacement. Soil Sci. Soc. Am. J., 50: 602-605.
  • Wrochna M., Małecka-Przybysz M., Gawrońska H. 2010. Effect of road de-icing salts with anticorrosion agents on selected plant species. Acta Sci. Pol. Hort. Cult. 9(4): 171-182.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c8927c6f-258a-4231-9216-42150073ed7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.