PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Endoglucanase and xylanase production by Chryseobacterium species isolated from decaying biomass

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lignocellulosic materials are potential sources of isolating bacteria that can be used to produce important value-added products such as cellulase (endoglucanase) and xylanase in industry. Based on the above-mentioned premise, this study aimed to assess endoglucanase and xylanase-degrading potentials of a bacterial isolate from decaying sawdust samples collected from a wood factory at Melani village, Nkonkobe Municipality of Eastern Cape Province, South Africa. The bacteria showed high activity for endoglucanase and xylanase when grown on carboxymethyl cellulose (CMC) and birch wood xylan as sole carbon sources, respectively. The bacterial isolate was identified through 16S rDNA sequencing and the gene sequence was found to have 98% similarity with that of Chryseobacterium taichungense. The sequence was deposited in the GenBank as Chrysobacterium taichungense SAMRC-UFH2 with accession number KU171370. Optimum culture conditions for endoglucanase and xylanase production included: pH 6, incubation temperature (25ºC), and agitation rates of 50 rpm and 150 rpm for endoglucanase and xylanase, respectively. The high enzyme activities exhibited by this bacterial strain portend it as a potentially relevant candidate as a producer for value-added products of biotechnological importance.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2651-2660,fig.,ref.

Twórcy

autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
  • Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice 5700, South Africa
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
  • Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice 5700, South Africa
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
  • Department of Biochemistry and Microbiology,Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice 5700, South Africa
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
  • Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice 5700, South Africa
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
  • Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice 5700, South Africa

Bibliografia

  • 1. ABO-STATE M.A.M., GHALY M.F. Abdellah E.M. Production of cellulases and xylanase by thermophilic and alkaliphilic bacterial strains isolated from agricultural wastes. World Appl Sci J. 22, 1603, 2013.
  • 2. CHAPLA D., DIVECHA J., MADAMWAR D., SHAH A. Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J. 49, 361, 2010.
  • 3. KOO Y.M. Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J Microbiol Biotechnol. 11, 229, 2001.
  • 4. LEE Y.J., KIM B.K. LEE B.H. JO K.I., LEE N.K., CHUNG C.H., LEE Y.C., LEE J.W. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Biores Technol. 99, 378, 2008.
  • 5. BEG Q., KAPOOR M., MAHAJAN L., HOONDAL G.S. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 326, 56, 2001.
  • 6. POLIZELI M.L.T.M., RIZZATTI A.C.S., MONTI R., TERENZI H.F., JORGE J.A., AMORIM D.S. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol. 67, 577, 2005.
  • 7. MOTTA F.L., ANDRADE C.C.P., SANTANA M.H.A. A review of xylanase production by the fermentation of xylan: classification, characterization and applications. Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization. 2013.
  • 8. ZHANG Y.H.P., HIMMEL M.E., MIELENZ J.R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 24, 452, 2006.
  • 9. BERNARDET J.F., NAKAGAWA Y. An introduction to the family Flavobacteriaceae. In The prokaryotes 455. Springer New York. 2006.
  • 10. BEKKER A. Growth and Spoilage Characteristics of (Doctoral dissertation, University of the Free State). 2011.
  • 11. BERNARDET J.F., VANCANNEYT M., MATTE-TAILLIEZ O., GRISEZ L., TAILLIEZ P., BIZET C., NOWAKOWSKI M., KEROUAULT B., SWINGS J. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Systematic and Appl Microbial. 640, 28, 2005.
  • 12. KASANA R.C., SALWAN R., DHAR H., DUTT S., GULATI A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 57, 503, 2008.
  • 13. JEFFREY L.S.H. Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. Afr J Biotechnol. 7, 3697, 2000.
  • 14. MAKI M.L., BROERE M., LEUNG K.T., QIN W. Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. Int J Biochem Mol Biol. 2, 146, 2011.
  • 15. SACCHI C.T., WHITNEY A.M., MAYER L.W., MOREY R., STEIGERWALT A., BORAS A., WEYANT R.S., POPOVIC T. Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerging infectious diseases 8, 1117, 2002.
  • 16. MANGAMURI U.K., MUVVA V., PODA S., KAMMA S. Isolation, identification and molecular characterization of rare actinomycetes from mangrove ecosystem of Nizampatnam. Mal J Microbiol. 8, 83, 2012.
  • 17. POORNA C.A., PREMA P. Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem Eng J. 32, 106, 2006.
  • 18. JECU L., Solid state fermentation of agricultural wastes for endoglucanase production. Indust Crops and Prod. 11, 1, 2000.
  • 19. MILLER G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt Chem. 31, 426, 1959.
  • 20. KUMAR A., GUPTA R., SHRIVASTAVA B., KHASA Y.P., KUHAD R.C. Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J Mol Cat B: Enz. 74, 170, 2012.
  • 21. BAJAJ B.K., KHAJURIA Y.P., SINGH V.P. Agricultural residues as potential substrates for production of xylanase from alkali-thermotolerant bacterial isolate. Biocat Agric Biotechnol. 314, 1, 2012.
  • 22. ADHYARU D.N., BHATT N.S., MODI, H.A. Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocataly Agric Biotechnol. 182, 3, 2014.
  • 23. AGNIHOTRI S., DUTT D., TYAGI C.H. KUMAR A. UPADHYAYA J.S. Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J Microbiol Biotechnol. 1349, 26, 2010.
  • 24. DAS A., BHATTACHARYA S., MURALI L. Production of cellulase from a thermophilic Bacillus sp. isolated from cow dung. American-Eurasian J Agric Environ Sci. 8, 685, 2010.
  • 25. PEREZ J., MUNOZ-DORADO J., DE LA R.T., MARTINEZ J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 5, 53, 2002.
  • 26. NIRANJANE A.J., MADHOU P., STEVENSON T.W. The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantean. Enz Microbiol Technol. 40, 1464, 2007.
  • 27. BATTAN B., SHARMA J., DHIMAN S.S., KUHAD R.C. Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enz Microbial Technol. 733, 41, 2007.
  • 28. MAKI M., LEUNG K.T., QIN W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci. 5, 500, 2009.
  • 29. ACHARYA S., CHAUDHARY A. Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz Arch Biol Technol. 55, 497, 2012.
  • 30. ACHARYA S., CHAUDHARY A. Effect of nutritional and environmental factors on cellulases activity by thermophilic bacteria isolated from hot spring. J Sci Ind Res. 70, 142, 2011.
  • 31. LADEIRA S.A., CRUZ E., DELATORRE A.B., BARBOSA J.B., MARTINS M.L.L. Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron J Biotech. 18, 110, 2015.
  • 32. BAJAJ B.K., SINGH N.P. Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl Biochem Biotechnol. 1804, 162, 2010.
  • 33. SUBRAMANIYAN S., PREMA P. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Rev Biotechnol. 22, 33, 2002.
  • 34. SHARMA N., BURAGOHAIN P., TANDON D., KAUSHAL R. Comparative study of potential cellulolytic and xylanolytic bacteria isolated from compost and their optimization for industrial use. J Agroaliment Proc Technol. 19, 284, 2013.
  • 35. BAKARE M.K., ADEWALE I.O., AJAYI A., SHONUKAN O.O. Purification and characterization of cellulose from the wild-type and two improved mutants of Pseudomonas fluorescens. Afr J Biotechnol. 4, 898, 2005.
  • 36. ODENIYI O.A., ONILUDE A.A., AYODELE M.A. Production characteristics and properties of cellulase/polygalacturonase by a Bacillus coagulans strain from a fermenting palm-fruit industrial residue. Afr J Microbiol Res. 3, 407, 2009.
  • 37. EL-SERSY N.A., ABD-ELNABY H., ABOU-ELELA G.M., IBRAHIM H.A., EL-TOUKHY N.M. Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber. Afr J Biotechnol. 635, 9, 2013.
  • 38. IMMANUEL G., DHANUSHA R., PREMA P., PALAVESAM A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol. 3, 25, 2006.
  • 39. ASSAREH R., HOSSEIN S.Z., NOGHABI K.A., AMINZADEH S., GHOLAMREZA B.K. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Biores Technol. 120, 99, 2012.
  • 40. ABDEL-FATTAH Y.R., EL-HELOW E.R., GHANEM K.M., LOTFY W.A. Application of factorial designs for optimization of avicelase production by a thermophilic Geobacillus isolate. Res J Microbiol. 2, 13, 2007.
  • 41. MURUGAN S., ARNOLD D., PONGIYA U.D., NARAYANAN P.M. Production of xylanase from Arthrobacter sp. MTCC 6915 using saw dust as substrate under solid state fermentation. Enz Res. 7. 2011. http://dx.doi.org/10.4061/2011/696942 (Article ID 696942).
  • 42. KUMAR L., DAVENDER K., SUSHIL N., RISHI G., NEELAM G., RAMESH C.K., VIJAY KUMAR G. Modulation of xylanase production from alkaliphilic Bacillus pumilus VLK-1 through process optimization and temperature shift operation. 3 Biotech 4, 345, 2014.
  • 43. IRFAN M., UMAR A., MUHAMMAD N., RUBINA N., QURATULAIN S. Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. J Rad Res Appl Sci. 9, 139, 2016.
  • 44. MONISHA R., UMA M.V., MURTHY V.K. Partial purification and characterization of Bacillus pumilus xylanase from soil source. Kathmandu University J Sci Eng Tech. 5, 137, 2009.
  • 45. SEPAHY A.A., GHAZI S., SEPAHY M.A. Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on agricultural waste. Enz Res. 9, 2011. http://dx.doi.org/10.4061/2011/593624 (Article ID 593624).
  • 46. SIMPHIWE P., ADEMOLA B., OLANIRAN O., PILLAY B. Sawdust and digestive bran as cheap alternate substrates for xylanase production. Afr J Microbiol Res. 5, 742, 2011.
  • 47. NAGAR S., GUPTA V.K., KUMAR D., KUMAR L., KUHAD R.C. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol. 37, 71, 2010.
  • 48. ANNAMALAI N., THAVASI R., JAYALAKSHMI S., BALASUBRAMANIAN T. Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated from marine environment. Indian J Biotechnol. 8, 291, 2009.
  • 49. ANAND A., KUMAR V., SATYANARAYANA T. Characteristics of thermostable endoxylanase and b-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17, 357, 2013.
  • 50. SÁ-PEREIRA P., MESQUITA A., DUARTE J.C., BARROS M.R.A., COSTA-FERREIRA M. Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enz Microb Technol. 30, 924, 2002.
  • 51. SHARMA P., BAJAJ B.K. Production and partial characterization of alkali-tolerant xylanase from an alkalophilic Streptomyces sp. CD3. J Sci Indust Res. 64, 688, 2005.
  • 52. KAPOOR M., NAIR L.M., KUHAD R.C. Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem Eng J. 38, 88, 2008.
  • 53. JARADAT Z., DAWAGREH A., ABABNEH Q., SAADOUN I. Influence of culture conditions on cellulase production by Streptomyces sp. (strain J2). Jordan J Biol Sci. 1, 141, 2008.
  • 54. Ire F.S., Berebon D.P. Production and characterization of crude 1, 4-β-endoglucanase by Pseudomonas aeruginosa using corn (Zea mays) cobs and pawpaw (Carica papaya) fibres as substrates. J Adv Biol Biotechnol. 8, 1, 2016.
  • 55. LUGANI Y., SINGLA R., SOOCH B.S. Optimization of Cellulase Production from Newly Isolated Bacillus sp. Y3. J Bioproc Biotech. 5, 264, 2015. doi:10.4172/2155-9821.1000264.
  • 56. RASTOGI G., BHALLA A., ADHIKARI A., BISCHOFF K.M., HUGHES S.R., CHRISTOPHER L.P., SANI R.K., Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Biores Technol. 101, 8798, 2010.
  • 57. HAN X., ZHENG L., LIAN S., XIE Y. Study on screening and cultivation conditions xylanase producing alkalophilic bacteria. Wuhan Univ J Nat Sci. 9, 125, 2004.
  • 58. BAJAJ B.K., MANHAS K. Production and characterization of xylanase from Bacillus licheniformis P11(C) with potential for fruit juice and bakery industry. Biocat Agric Biotechnol. 1, 330, 2012.
  • 59. RAY A.K., BAIRAGI A., GHOSH K.S., SEN S.K. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta lchthyologica ET Piscatoria. 37, 47, 2007.
  • 60. EL-REFAI H.A., ABDELRAHMAN H.Y., ABDULLA H., HANNA A.G., HASHEM A.H., EL-REFAI AH., AHMED E.M. Studies on the production of actinomycin by Nocardioides luteus, a novel source. Curr Trends in Biotechnol Pharm. 5, 1282, 2011,
  • 61. SANGHI A., GARG N., GUPTA V.K., MITTAL A., KUHAD R.C., One step purification and characterization of a cellulase free xylanase produced by alkalophilic Bacillus subtilis ASH. Braz J Microbiol. 41, 467, 2010.
  • 62. ARIFFIN H., ABDULLAH N., UMI KALSOM M.S., SHIRAI Y., HASSAN M.A. Production and characterisation of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 3, 47, 2006.
  • 63. NAGENDRA H., SOUTHWORTH J., TUCKER C. Accessibility as a determinant of landscape transformation in western Honduras: linking pattern and process. Landscape Ecology 18, 141, 2003.
  • 64. HAQ I.U., HAMEED U., SHAHZADI K., JAVED M., ALI S. Cotton saccharifying activity of cellulases by Trichoderma harzianum UM-11 in shake flask. Int J Bot. 1, 19, 2005.
  • 65. NIZAMUDEEN S., BAJAJ B.K. A novel thermo-alkali tolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol. Biotechnol. 47, 435, 2009.
  • 66. FATOKUN E.N., NWODO U.U., OKOH A.I. Classical optimization of cellulase and xylanase production by a marine Streptomyces species. Appl Sci. 6, 286, 2016. doi:10.3390/app6100286.
  • 67. PRAKASH P., JAYALAKSHMI S.K., PRAKASH B., RUBUL M., SREERAMULU K. Production of alkaliphilic, halotolerent, thermostable cellulose free xylanase by Bacillus halodurans PPKS-2 using agro waste: single step purification and characterization. World J Microbiol Biotechnol. 82, 183, 2011.
  • 68. GUPTA U., KAR, R. Xylanase production by a thermotolerant Bacillus species under solid-state and submerged fermentation. Braz Arch Biol Technol. 52, 1363, 2009.
  • 69. MRUDULA S., SHYAM N. Immobilization of Bacillus megaterium MTCC 2444 by Ca-alginate entrapment method for enhanced alkaline protease production. Braz Arch Biol Technol. 55, 135, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c84b980c-b759-45c2-bed2-c9c01aedd557
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.