1. Baron E., 2006. On modelling of periodic plates having the inhomogeneity period of an order of the plate thickness, J. Theor. Appl. Mech., 44, 1, 3-18.
2. Jędrysiak J., 2009. Higher order vibrations of thin periodic plates, Thin-Walled Struct., 47, 890-901.
3. Jędrysiak J., 2010. On the modelling of dynamics and stability problems for thin functionally graded plates, in: Advances in the mechanics of inhomogeneous media, eds. Cz. Woźniak, M. Kuczma, R. Świtka, K. Wilmański, Univ. Zielona Góra Press, Zielona Góra, 271-277.
4. Jędrysiak J., 2010, Thermomechanics of laminates, plates and shells with functionally graded structure, [Termomechanika laminatów, płyt i powłok o funkcyjnej gradacji własności], in Polish, Wydawnictwo Politechniki Łódzkiej, Łódź.
5. Jędrysiak J., Michalak B., 2010. On the modelling of stability problems for thin plates with functionally graded structure, Thin-Walled Struct., (in press).
6. Jędrysiak J., Paś A., 2005. On the modelling of medium thickness plates interacting with a periodic Winkler's subsoil, EJPAU 8(4), #57, www.ejpau.media.pl.
7. Jędrysiak J., Radzikowska A., 2007. On the modelling of heat conduction in a non-periodically laminated layer, J. Theor. Appl. Mech., 45, 239-257.
8. Jikov V.V., Kozlov C.M., Oleinik O.A., 1994. Homogenization of differential operators and integral functionals, Springer Verlag, Berlin-Heidelberg.
9. Kaźmierczak M., Jędrysiak J., Wirowski A., 2010. Free vibrations of thin plates with transversally graded structure, Civ. Environ. Engrng. Rep., (in the course of publication).
10. Michalak B., 2002. On the dynamic behaviour of a uniperiodic folded plates, J. Theor. Appl. Mech., 40, 113-128.
11. Nagórko W., Woźniak Cz., 2002. Nonasymptotic modelling of thin plates reinforced by a system of stiffeners, EJPAU 5(2), #012, www.ejpau.media.pl.
12. Ostrowski P., Michalak B., Non-stationary heat transfer in hollow cylinder with functionally graded material properties, J. Theor. Appl. Mech., (in the course of publication).
13. Rychlewska J., Woźniak Cz., Woźniak M., 2006. Modelling of functionally graded laminates revisited, EJPAU 9(2), #06, www.ejpau.media.pl.
14. Suresh S., Mortensen A., 1998. Fundamentals of functionally graded materials, The University Press, Cambridge.
15. Szymczyk J., Woźniak Cz., 2006. A contribution to the modeling of periodically laminated elastic solids, EJPAU 9(1), #22, www.ejpau.media.pl.
16. Tomczyk B., 2007. A non-asymptotic model for the stability analysis of thin biperiodic cylindrical shells, Thin-Walled Structures, 45, 941-944.
17. Wierzbicki E., Woźniak Cz., Łacińska L., 2005. Boundary and initial fluctuation effect on dynamic behaviour of a laminated solid, Arch. App. Mech., 74, 619-628.
18. Woźniak Cz., 2010, Asymptotic modelling and boundary-layer effect for functionally graded microlayered composites, Acta Scientiarum Polonorum, Architectura, 9(2), 1-8.
19. Woźniak Cz. et al. (eds.), 2010. Mathematical modeling and analysis in continuum mechanics of microstructured media, Wydawnictwo Politechniki Śląskiej, Gliwice.