PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |
Tytuł artykułu

Impact of habitat complexity on body size of two spider species, Alopecosa cuneata and A. pulverulenta (Araneae, Lycosidae), in river Valley Grasslands

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many studies have shown that vegetation structure and habitat complexity affect taxonomic composition, functional diversity, and the number of individuals in spider assemblages. These factors also affect spider body size, but mechanisms responsible for that are still not well understood. In our research, we examined the relationship between the body size of spiders from two species – Alopecosa cuneata and A. pulverulenta – and environmental factors such as habitat type and habitat complexity. Our research was conducted in the Bug River Valley on 12 plots covering three types of habitats: mesic meadow, sandy grassland, and xerothermic grassland. Spiders were collected in 2007-08 from April to mid-November using pitfall traps. In total we measured 334 males and 168 females of Alopecosa cuneata and 315 males and 104 females of A. pulverulenta. The generalized linear mixed model revealed that individuals of Alopecosa cuneata as well as A. pulverulenta reached larger sizes in more complex vegetation, whereas the habitat type did not affect the spider body size. One of the likely mechanisms responsible for a larger body size in more complex habitats is predator pressure. Birds as the main predators of spiders, being selective in their choice of prey, may collect larger spiders with higher intensity than smaller ones. We suggest that more complex habitats with dense vegetation provide better shelter for large spiders, which allows them to avoid predators. Our results indicate that habitat complexity may be an important determinant of body size distribution in spider assemblages.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
27
Numer
2
Opis fizyczny
P.853-859,fig.,ref.
Twórcy
autor
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Science, Department of Zoology, B. Prusa 12, 08-110 Siedlce, Poland
autor
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Science, Department of Zoology, B. Prusa 12, 08-110 Siedlce, Poland
autor
  • Warszawska 80A , 21-400 Lukow, Poland
  • Siedlce University of Natural Sciences and Humanities, Faculty of Natural Science, Department of Zoology, B. Prusa 12, 08-110 Siedlce, Poland
Bibliografia
  • 1. MCCUE M.D., SALINAS I., RAMIREZ G., WILDER S. The postabsorptive and postprandial metabolic rates of praying mantises: Comparisons across species, body masses, and meal sizes. J. Insect Physiol. 93-94, 64, 2016.
  • 2. Holm S., Davis R.B., Javois J., Õunap E., Kaasik A., Molleman F., Tammaru T. A comparative perspective on longevity; the effect of body size dominates over ecology in moths. J. Evol. Biol. 29 (12), 2422, 2016.
  • 3. RODGERS G.M., DOWNING B., MORRELL L.J. Prey body size mediates the predation risk associated with being “odd”. Behav. Ecol. 26 (1), 242, 2015.
  • 4. HARRISON A., SCANTLEBURY M., MONTGOMERY W.I. Body mass and sex-biased parasitism in wood mice Apodemus sylvaticus. Oikos 119 (7), 1099, 2010.
  • 5. STEEN D.A., MCCLURE C.J.W., SMITH L.L., HALSTEAD B.J., DODD JR C.K., SUTTON W.B., LEE J.R., BAXLEY D.L., HUMPHRIES W.J., GUYER C. The effect of coachwhip presence on body size of North American racers suggests competition between these sympatric snakes. J. Zool. 289 (2), 86, 2013.
  • 6. Emmrich M., Pedron S., Brucet S., Winfield I.J., Jeppesen E., Volta P., Argillier C., Lauridsen T.L., Holmgren K., Hesthagen T. Mehner T. Geographical patterns in the body-sizestructure of European lake fishassemblages along abiotic and biotic gradients. J. Biogeogr. 41 (12), 2221, 2014.
  • 7. PINCHEIRA-DONOSO D., MEIRI S. An intercontinental analysis of climate-driven body size clines in reptiles; no support for patterns, no signals of processes. Evol. Biol. 40 (4), 562, 2013.
  • 8. COETZEE B.W.T., LE ROUX P.C., CHOWN S.L. Scale effects on the body size frequency distributions of African birds; patterns and potential mechanisms. Global Ecol. Biogeogr. 22 (4), 380, 2013.
  • 9. LOPEZ L.C.S., FIGUEIREDO M.S.L., DE AGUIAR FRACASSO M.P., MESQUITA D.O, ANJOS U.U., GRELLE C.E.V. The role of local versus biogeographical processes in influencing diversity and body-size variation in mammal assemblages. Ecol. Evol. 6 (5), 1447, 2016.
  • 10. Ulrich W. Body size distribution of European Hymenoptera. Oikos. 114 (3), 518, 2006.
  • 11. Ulrich W., Komosiński K., Zalewski M. Body size and biomass distributions of carrion visiting beetles: do cities host smaller species? Ecol. Res. 23 (2), 241, 2007.
  • 12. Entling W., Schmidt-Entling M.H., Bacher S., Brandl R., Nentwig W. Body size-climate relationships of European spiders. J. Biogeogr. 37 (3), 477, 2010.
  • 13. Ulrich W., Fiera C. Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola). Global Ecol. Biogeogr. 19 (6), 905, 2010.
  • 14. Homburg K., Schuldt A., Drees C., Assmann T. Broad-scale geographic patterns in body size and hind wing development of western Palaearctic carabid beetles (Coleoptera: Carabidae). Ecography. 36 (2), 166, 2013.
  • 15. SCRIVEN J.J., WHITEHORN P.R., GOULSON D., TINSLEY M.C. Bergmann’s body size rule operates in facultatively endothermic insects: evidence from a complex of cryptic bumblebee species. PLoS One 11 (10), e0163307.doi:10.1371/journal.pone.0163307, 2016.
  • 16. FATTORINI S., SCIOTTI A., TRATZI P., DI GIULIO A. Species distribution, ecology, abundance, body size, and phylogeny originate interrelated rarity patterns at regional scale. J. Zoolog. Syst. Evol. Res. 51 (4), 279, 2013.
  • 17. WARZECHA D., DIEKÖTTER, WOLTERS V., JAUKER F., Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecol. 31 (7), 1449, 2016.
  • 18. Wise D.H. Spiders in ecological webs. Cambridge University Press, Cambridge. 328, 1993.
  • 19. GÓMEZ J.E., LOHMILLER J., JOERN A. Importance of vegetation structure to the assembly of an aerial web-building spider community in North American open grassland. J. Arachnol. 44 (1), 28, 2016.
  • 20. Butler V.P., Haddad C.R. Spider assemblages associated with leaf litter of three tree species in central South Africa (Arachnida: Araneae). Afr. J. Ecol. 49 (3), 301, 2011.
  • 21. Gonçalves -Souza T., Almeida -Neto M., Romero G.Q. Bromeliad architectural complexity and vertical distribution predict spider abundance and richness. Austral. Ecology. 36 (4), 476, 2011.
  • 22. Malumbres-Olarte J., Vink C.J., Ross J.G., Cruickshank R.H., Paterson A.M. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv. Divers. 6 (2), 124, 2013.
  • 23. Diehl E., Mader V.L., Wolters V., Birkhofer K. Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia, 173 (2), 579, 2013.
  • 24. DRAPELA T., FRANK T., HEER X., MOSER D., ZALLER J. G. Landscape structure affects activity density, body size and fecundity of Pardosa wolf spiders (Araneae: Lycosidae) in winter oilseed rape. Eur. J. Entomol 108, 609, 2011.
  • 25. Gibb H., Muscat D., Binns M.R., Silvey C.J., Peters R.A., Warton D.I., Andrew N.R. Responses of foliage-living spider assemblage composition and traits to a climatic gradient in Themeda grasslands. Austral. Ecology. 40 (3), 225, 2015.
  • 26. Sundberg I., Gunnarsson B. Spider abundance in relation to needle density in spruce. J. Arachnol. 22 (3), 190, 1994.
  • 27. Halaj J., Ross D.W., Moldenke A.R. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos. 90 (1), 139, 2000.
  • 28. Gunnarsson B. Bird predation on spiders: ecological mechanisms and evolutionary consequences. J. Arachnol. 35 (3), 509, 2007.
  • 29. ASKENMO C. VON BRÖMSSEN A., EKMAN J., JANSSON C. Impact of some wintering birds on spider abundance in spruce. Oikos. 28 (1), 90, 1977.
  • 30. Gunnarsson B. Bird predation and vegetation structure affecting spruce-living arthropods in a temperate forest. J. Anim. Ecol. 65 (3), 389, 1996.
  • 31. Gunnarsson B. Bird predation as a sex- and size-selective agent of the arboreal spider Pityohyphantes phrygianus. Funct. Ecol. 12 (3), 453, 1998.
  • 32. McCoy E.D., Bell S.S. Habitat structure: the evolution and diversification of a complex topic. [In:] Bell S.S., McCoy E.D., Mushinsky H.R. (eds) Habitat structure: the physical arrangements of objects in space. Chapman and Hall, London, 3, 1991.
  • 33. Nentwig W., Blick T., Gloor D,. Hänggi A., Kropf C. Spiders of Europe. www.araneae.unibe.ch. Version 04.2017.
  • 34. Rozwałka R., Sienkiewicz P. Spiders and harvestmen (Arachnida: Araneae, Opiliones) of the Słoneczne Wzgórza Nature Reserve in the Odra Valley. Przegląd Przyrodniczy 25 (3) 31, 2014 [In Polish].
  • 35. Hänggi A., Stöckli E., Nentwig W. Habitats of Central European Spiders. Miscellanea Faunistica Helvetiae 4, 460 1995.
  • 36. Kronestedt T. Separation of two species standing as Alopecosa aculeata (Clerck) by morphological, behavioural and ecological characters, with remarks on related species in the pulverulenta group (Araneae, Lycosidae). Zool. Scr. 19 (2), 203, 1990.
  • 37. Załuski T. Meadow communities of Cnidion dubii Bal.- Tul 1966 alliance in Poland. Monographiae Botanicae 77, 1, 1995 [In Polish].
  • 38. Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. PWN, Warszawa. p. 540, 2005 [In Polish].
  • 39. SPEARS L.R., MACMAHON J.A. An experimental study of spiders in a shrub-steppe ecosystem: the effects of prey availability and shrub architecture. J. Arachnol. 40 (2), 218, 2012.
  • 40. Růžička V., Zacharda M. Variation and diversity of spider assembalges along a thermal gradient in scree slopes and adjacent cliffs. Pol. J. Ecol. 58 (2), 361, 2010.
  • 41. Stańska M., Stański T., Gładzka A., Bartos M.. Spider assemblages of hummocks and hollows in a primeval alder carr in the Białowieża National Park – effect of vegetation structure and soil humidity. Pol. J. Ecol. 64 (4), 564, 2016.
  • 42. Platen R., Berger G.. The impact of structural and landscape features of set-asides on the spiders (Araneae) of the herb layer. J. Arachnol. 41 (2), 143, 2013.
  • 43. GÓMEZ J.E., LOHMILLER J., JOERN A. Importance of vegetation structure to the assembly of an aerial web-building spider community in North American open grassland. J. Arachnol. 44 (1), 28, 2016.
  • 44. PODGAISKI L.R., RODRIGUES G.G. Spider community responds to litter complexity: insights from a small-scale experiment in an exotic pine stand. Iheringia Série Zoologia. 107, 1, 2017.
  • 45. Shine R. Ecological causes for the evolution of sexual size dimorphism: a review of the evidence. Q. Rev. Biol. 64 (4), 419, 1989.
  • 46. Vincent L.S. The natural history of the California Turret Spider Atypoides Riversi (Araneae, Antrodiaetidae): demographics, growth rates, survivorship, and longevity. J Arachnol. 21 (1), 29, 1993.
  • 47. Kapustjanskij A., Streinzer M., Paulus H.F., Spaethe J. Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct. Ecol. 21 (6), 1130, 2007.
  • 48. DeVito J., Formanowicz D.R. The effects of size, sex, and reproductive condition on thermal and desiccation stress in a riparian spider (Pirata sedentarius, Araneae, Lycosidae). J Arachnol. 31 (2), 278, 2003.
  • 49. Shimazaki A., Miyashita T. Variable dependence on detrital and grazing food webs by generalist predators: aerial insects and web spiders. Ecography. 28 (4), 485, 2005.
  • 50. Nentwig W. Epigeic spiders, their potential prey and competitors: relationship between size and frequency. Oecologia 55 (1), 130, 1982.
  • 51. Nentwig W., Wissel C. A comparison of prey lengths among spiders. Oecologia. 68 (4), 595, 1986.
  • 52. Novotny V., Wilson M.R. Why are there no small species among xylem-sucking insects? Evol. Ecol. 11 (4), 419, 1997.
  • 53. Wardhaugh C.W., Edwards W., Stork N.E. Body size variation among invertebrates inhabiting different canopy microhabitat: flower visitors are smaller. Ecol. Entomol. 38 (1), 101, 2013.
  • 54. COOK L.M., GRANT B.S., SACCHERI I.J., MALLET J. Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biol. Lett. 8 (4), 609, 2012.
  • 55. HOY S.R., PETTY S.J., MILLON A., WHITFIELD D.P., MARQUISS M., DAVISON M., LAMBIN X. Age and sexselective predation moderate the overall impact of predators. J. Anim. Ecol. 84 (3), 692, 2015.
  • 56. WORISCHKA S., SCHMIDT S.I., HELLMANN C., WINKELMANN C. Selective predation by benthivorous fish on stream macroinvertebrates – The role of prey traits and prey abundance. Limnologica 52, 41, 2015.
  • 57. Gliwicz Z.M., Szymańska E., Wrzosek D. Body size distribution in Daphnia populations as an effect of prey selectivity by planktivorous fish. Hydrobiologia. 643 (1), 5, 2010.
  • 58. Mestre L., Garcia N., Barrientos J.A., Espa-Daler X., Piñol J. Bird predation affects diurnal and nocturnal web-building spiders in a Mediterranean citrus grove. Acta Oecol. 47, 74, 2013.
  • 59. Kozlov M.V., Stańska M., Hajdamowicz I., Zverev V., Zvereva E.L. Factors shaping latitudinal patterns in communities of arboreal spiders in northern Europe. Ecography 38 (10), 1026, 2015.
  • 60. Gunnarson B., Wiklander K. Foraging mode of spiders affects risk of predation by birds. Biol. J. Linn. Soc. 115 (1), 58, 2015.
  • 61. Vollrath F., Parker G.A. Sexual dimorphism and distorted sex ratios in spiders. Nature. 360, 156, 1992.
  • 62. Walker S.E., Rypstra A.L. Sexual dimorphism and the differential mortality model: is behaviour related to survival? Biol. J. Linn. Soc. 78 (1), 97, 2003.
  • 63. ŠIPOŠ J., KINDLMANN P. Effect of the canopy complexity of trees on the rate of predation of insect. J. App. Entomol. 137 (6), 445, 2013.
  • 64. POWOLNY T., ERAUD C., MASSON J.-D., BRETAGNOLLE V. Vegetation structure and inter-individual distance affect intake rate and foraging efficiency in a granivorous forager, the Eurasian Skylark Alauda arvensis. J. Ornithol. 156 (3), 569, 2015.
  • 65. BASIŃSKA A.M., ANTCZAK M., ŚWIDNICKI K., JASSEY V.E.J., KUCZYŃSKA-KIPPEN N. Habitat type as strongest predictor of the body size distribution of Chydorus sphaericus (O.F. Müller) in small water bodies. Int. Rev. Hydrobiol. 99 (5), 382, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c81e68c4-abf7-4269-8b2a-e16622bee3a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.