PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 60 | 2 |

Tytuł artykułu

Spatial pattern of potamozooplankton community of the slowly flowing fishless stream in relation to abiotic and biotic factors

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
While the knowledge about spatial structure of zooplankton communities in large rivers has been relatively well studied, little is known on the longitudinal spatial variation of zooplankton in small, slowly flowing fishless streams. In these streams, changes in zooplankton communities along entire length of the stream can be quite different than in those where young planktivorous stages of fish reduce the abundance of zooplankton. The aim of this study was to answer the following questions. What is the spatial pattern of the taxonomic groups of zooplankton in the slow-flowing stream? Do the small tributaries have an impact on the zooplankton community in the main stream? What biotic variables (content of chlorophyll a, vegetation coverage, macroinvertebrates abundance) and abiotic variables (temperature, dissolved oxygen, pH, conductivity, N-NO3, N-NO2, N-NH3, TN, P-PO4, TP, width, depth, current velocity, discharge) most affect the zooplankton community in a small stream? This study was performed at six sites along a small (1 km long, mean width 1.7 m; mean depth 0.3 m; mean current velocity 5.9 cm s-1; mean discharge 2.6 cm3 s-1, mean vegetation coverage 52%) fishless agricultural-meadow stream and at one site in its two tributaries. The stream was searched with the use of electric fish gear to make sure there were no fish. Zooplankton samples were collected each month throughout the years 2008 and 2009. The main factors which affected the zooplankton communities were hydrological conditions, especially current velocity. Water current in the stream impeded the movement of rotifers and juvenile copepods. Adult copepods were able to manage in the current, over the entire length of the stream. Cladocerans probably were only able to persist in the last section of the watercourse flow, where the velocity was the lowest (3.3 cm s-1) and where the content of chlorophyll a was the highest (56.2 μg L-1 ). The two tributaries had only a small effect on shaping of the zooplankton communities in the main stream. On the basis of Pearson correlations it can be concluded that macroinvertebrate had a low ability to reduce the density of zooplankton, all significant correlations between the abundance of potamozooplankton and that of macroinvertebrates were positive.

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.323-338,fig.,ref.

Twórcy

  • Department of General Zoology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland

Bibliografia

  • Allan J.D. 1998 – Ekologia wod płynących [Ecology of runnig waters] – PWN, Warszawa, 450 pp. (in Polish).
  • Basu B.K., Pick F.R. 1996 – Factors regulating phytoplankton and zooplankton biomass in temperate rivers – Limnol. Oceanogr. 41: 1572–1577.
  • Campbell C.E. 2002 – Rainfall events and downstream drift of microcrustacean zooplankton in a Newfoundland boreal stream – Can. J. Zool. 80: 997–1003.
  • Chang K.H,, Doi H., Imai H., Gunji F., Nakano S.I. 2008 – Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory – Limnology, 9: 125–133.
  • Cobbaert D., Bayley E., Greter J-M. 2010 – Effects of a top invertebrate predator (Dytiscus alascanus; Coleoptera: Dytiscidae) on fishless pond ecosystems – Hydrobiologia, 644: 103–114.
  • Czachorowski S., Pietrzak L. 2003 – Klucz do oznaczania rodzin chruścikow (Trichoptera) występujących w Polsce [A key to the Polish freshwater Trichoptera] – Mantis, Olsztyn, 32 pp. (in Polish).
  • Czerniawski R., Domagała J. 2010 – Similarities in zooplankton community between River Drawa and its two tributaries (Polish part of River Odra) – Hydrobiologia, 638: 137–149.
  • Czerniawski R., Domagała J. 2012 – Potamozooplankton communities in three different outlets from mesotrophic lakes located in lake-river system – Oceanol. Hydrobiol. St. 1: 46–56.
  • Czerniawski R., Pilecka-Rapacz M. 2011 – Summer zooplankton in small rivers in relation to selected conditions – Cent. Eur. J. Biol. 6: 659–674.
  • Dieguez M.C., Gilbert J.J. 2011 – Daphniarotifer interactions in Patagonian communities – Hydrobiologia, 662: 189–195.
  • Dodson S.I., Newman A.L., Will-Wolf S., Alexander M.L., Woodford M.P., Van Egeren S. 2009 – The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA) – J. Plankton Res. 31: 93–100.
  • Ejsmont-Karabin J., Kruk M. 1998 – Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland – Hydrobiologia, 387/388: 241–249.
  • Gliwicz Z.M. 1985 – Predation or food limitation: an ultimate reason for extinction of planktonic cladoceran species – Ergebnisse Limnol. 21: 419–430.
  • Gołdyn R., Kowalczewska-Madura K. 2008 – Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland – J. Plankton Res. 30: 33–42.
  • Harding J.P., Smith W.A. 1974 – A key to the British freshwater cyclopid and calanoid copepods – Freshwater Biological Association, Special Publication, 18, 2, Far Sawrey, Cumbria, 56 pp.
  • Humphries. P., Cook R.A., Richardson A.J., Serafini L.G. 2006 – Creating a disturbance: manipulating slackwaters in a lowland river – River Res. Appl. 22: 525–542.
  • Hynes H.B.N. 1970 – The ecology of running waters – University of Toronto Press, Toronto, 555 pp.
  • Jack J.D., Thorp J.H. 2002 – Impacts of fish predation on an Ohio River zooplankton community – J. Plankton Res. 24: 119–127.
  • Kamarainen A.M., Rowland F.E., Biggs R., Carpenter S.R. 2008 – Zooplankton and the total phosphorus - chlorophyll a relationship: hierarchical Bayesian analysis of measurement error – Can. J. Fish. Aquat. Sci. 65: 2644–2655.
  • Kobayashi T., Shiel R.J, Gibbs P., Dixon P.I. 1998 – Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers – Hydrobiologia, 377: 133–145.
  • Kołodziejczyk A., Koperski P. 2000 – Bezkręgowce słodkowodne Polski [Polish invertebrates of freshwaters] – Univ. Warsaw Press, Warszawa, 250 pp. (in Polish).
  • Kuczyńska-Kippen N., Nagengast B. 2006 – The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities – Hydrobiologia, 559: 203–212.
  • Kutikova L.A. 1970 – Kolovratki fauni CCCP [Rotifer fauna of USSR] – Nauka, Leningrad, 744 pp. (in Russian).
  • Lair N. 2006 – A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota – River Res. Appl. 22: 567–593.
  • Le´Vesque S., Beisner B.E., Peres-Neto P.R. 2010 – Meso-scale distributions of lake zooplankton reveal spatially and temporally varying trophic cascades – J. Plankton Res. 32: 1369–1384.
  • May L., Bass J.A.B. 1998 – A study of rotifers in the River Thames, England, April–October, 1996 – Hydrobiologia, 387/388: 251–257.
  • Mendley K.A., Havel J.E. 2007 – Hydrology and local environmental factors influencing zooplankton communities in floodplains ponds – Wetlands, 27: 846–872.
  • Nielsen D., Watson G., Petrie R. 2005 – Microfaunal communities in three lowland rivers under differing regimes – Hydrobiologia, 543: 101–111.
  • O’Brien W.J. 1987 – Planktivory by freshwater fish: thrust and parry in the pelagial (In: Predation. Direct and Indirect Impacts on Aquatic Communities, Eds: W.C. Kerfoot, A. Sih) – Univ. Press New England, Hanover and London, pp. 3–16.
  • Oksanen J. 2009 – Multivariate analysis of ecological communities in R: vegan tutorial. Available from: http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf, pp. 42.
  • Phillips E.C. 1995 – Comparison of the zooplankton of a lake and stream in Northwest Arkansas – J. Fresh. Ecol. 10: 337–341.
  • Pourriot R., Rougier C., Miquelis A. 1997 – Origin and development of river zooplankton: example of the Marne – Hydrobiologia, 345: 143–148.
  • Reckendorfer W., Keckeis H., Winkler G., Schiemer F. 1999 – Zooplankton abundance in the River Danube, Austria: the significance of inshore retention – Freshwater Biol. 41: 583–591.
  • Richardson W.B. 1992 – Microcrustacea in flowing water: experimental analysis of washout times and a field test – Freshwater Biol. 28: 217–230.
  • Rybak J.I. 1996 – Przegląd słodkowodnych zwierząt bezkręgowych. Cz. V. Bezkręgowce bentosowe [A review of freshwater invertebrates, Part. V. Benthic invertebrates] – PIOŚ, Biblioteka Monitoringu Środowiska, Warszawa, 112 pp. (in Polish).
  • Rzoska J. 1976 – Zooplankton of the Nile system (In: The Nile, biology of an ancient river, Ed: J. Rzoska) – Junk, The Hague, pp. 333–343.
  • Sandlund O.T. 1982 – The drift of zooplankton and microzoobenthos in the river Strandaelva, western Norway – Hydrobiologia, 94: 33–48.
  • Schwerdtfeger F. 1975 – Okologie der Tire. Band 3: Synokologie – Paul Parey Verlag, Hamburg-Berlin, 678 pp.
  • Taylor B.E. 1980 – Size-selective predation on zooplankton (In: Evolution and ecology of zooplankton communities, Ed: W.C. Kerfoot– Univ. Press New England, Hanover, pp. 377–387.
  • Thorp J.H., Thoms M.C., Delong M.D. 2006 – The riverine ecosystem synthesis: biocomplexity in river networks across space and time – River Res. Appl. 22: 123–147.
  • Vrankovsky M. 1995 – The effect of current velocity upon the biomass of zooplankton in the River Danube side arms – Biologia (Bratislava), 50: 461–464.
  • Wagler E. 1937 – Krebstiere [Crustaceans] (In: Die Tierwelt Mitteleeuropas [The animals of Centre Europe], Eds: P. Brohmer, G. Ulmer) 2, 2a – Leipzig, 224 pp.
  • Walks D.J., Cyr H. 2004 – Movement of plankton through lake-stream systems – Freshwater Biol. 49: 745–759.
  • Winner J.M. 1975 – Zooplankton (In: River ecology, Ed: B.A. Whitton) – Univ. California Press, Berkeley, pp. 155–169.
  • Żurek R. 2006 – Response of rotifers to hydrochemical and biotic factors – Oceanol. Hydrobiol. St. 2: 121–139.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c8167862-737c-4ef9-98ae-1bceaa8048a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.