Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | 3 |
Tytuł artykułu

Comparison of fuzzy system with neural aggregation FSNA with classical TSK fuzzy system in anti-collision problem of USV

Warianty tytułu
Języki publikacji
The paper presents the research whose the main goal was to compare a new Fuzzy System with Neural Aggregation of fuzzy rules FSNA with a classical Takagi-Sugeno-Kanga TSK fuzzy system in an anti-collision problem of Unmanned Surface Vehicle USV. Both systems the FSNA and the TSK were learned by means of Cooperative Co-evolutionary Genetic Algorithm with Indirect Neural Encoding CCGA-INE. The paper includes an introduction to the subject, a description of the new FSNA and the tuning method CCGA-INE, and at the end, numerical research results with a summary. The research includes comparison of the FSNA with the classical TSK system in the anti-collision problem of the USV
Słowa kluczowe
Opis fizyczny
  • Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland
  • 1. D. Driankov, H. Hellendoorn, M. Reinfrank, An Introduction to Fuzzy Control, Springer-Verlag, 1996.
  • 2. T.J. Fossen, Guidance and Control of Ocean Vehicles, John Wiley and Sons Ltd., 1994.
  • 3. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading, Massachusetts, 1989.
  • 4. K. Guney, N. Sarikaya, Comparison of Mamdani and Sugeno Fuzzy Inference System Models for Resonant Frequency Calculation of Rectangular Microstrip Antennas, Progress In Electromagnetics Research B, Vol. 12, p. 81–104, 2009.
  • 5. C. Hwang, “The integrated design of fuzzy collision-avoidance and H∞-autopilots on ships”, The Journal of Navigation, Vol. 55(1), pp.117-136, 2002.
  • 6. Z. Kitowski, “Autonomous unmanned surface vehicle Edredon”, Polish Hyperbaric Research, Vol. 3(40), 2012, s. 7-22.
  • 7. J. Lisowski, “Sensitivity of Computer Support Game Algorithms of Safe Ship Control”, International Journal of Applied Mathematics and Computer Science, Vol. 23, No. 2, 439–446, 2013.
  • 8. E. H. Mamdani, S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man-machine Studies, Vol. 7, p. 1-13, 1975.
  • 9. K. Naus, M. Wąż, A simplified navigational chart pyramid dedicated to an autonomous navigational system, Polish Hyperbaric Research, Vol. 3(40), pp. 99-118, 2012.
  • 10. S. Osowski, Neural networks for data processing, in polish, Publishing House of Technology University in Warsaw, 2006.
  • 11. M. A. Potter, K. A. De Jong, “Cooperative coevolution: An architecture for evolving coadapted subcomponents”, Evolutionary Computation, Vol. 8(1), p. 1–29, 2000.
  • 12. T. Praczyk, “Neural anti-collision system for Autonomous Surface Vehicle”, Neurocomputing, Vol. 149, Part B, p. 559–572, 2015.
  • 13. T. Praczyk, P. Szymak, “Decision System for a Team of Autonomous Underwater Vehicles – Preliminary Report”, Neurocomputing, Vol. 74 (17), pp. 3323-3334, 2011.
  • 14. T. Praczyk, P. Szymak, “Using Genetic Algorithms to Fix a Route for an Unmanned Surface Vehicle”, in Proceedings of the 17th International Conference on Methods and Models in Automation and Robotics, pp. 487-492, 2012.
  • 15. P. Szymak, T. Praczyk, “Using Neural-Evolutionary-Fuzzy Algorithm for Anti-collision System of Unmanned Surface Vehicle”, in Proceedings of the 17th International Conference on Methods and Models in Automation and Robotics, pp. 286-290, 2012.
  • 16. P. Szymak, “Course Control of Unmanned Surface Vehicle”, Solid State Phenomena, Vol. 196, pp. 117-123, 2013.
  • 17. T. Takagi, M. Sugeno, “Fuzzy Identification of Systems and its Application to Modelling and Control”, IEEE Transactions on Systems, Man and Cybernetics, vol. 15, pp. 116-132, 1985.
  • 18. J. Vieira, F.M. Dias, A. Mota, Neuro-Fuzzy Systems: A Survey, WSEAS Transactions on Systems, 3(2), 2004.
  • 19. L. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, pp. 338–353, 1965.
  • 20. Y. Zhuo, “An intelligent decision support system to ship anti-collision in multi-ship encounter”, in Proceedings of the Intelligent Control and Automation 2008, pp. 1066–1071, 2008.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.