PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 65 | 1 |

Tytuł artykułu

Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Assessing habitat naturalness belongs to the most current issues in conservation biology. It has been recognized that plants are able to indicate the naturalness of their habitat. Thus, species may be given relative naturalness indicator values (i.e. scores on an ordinal scale), reflecting their different tolerances against habitat degradation. In the present study, our first goal was to test whether relative naturalness indicator values are able to reveal known differences in naturalness levels. Our second purpose was to compare four different methodological approaches in order to identify which is the most reliable when analyzing habitat naturalness. We compared near-natural and degraded plots on the bases of (1) unweighted plot means, (2) plot medians, (3) unweighted naturalness indicator value populations, and (4) frequency-weighted naturalness indicator value populations. We found that relative naturalness indicator values performed well in differentiating among near-natural and degraded vegetation. Unweighted mean indicator values were the most reliable, but frequency-weighted indicator value populations were nearly as efficient as unweighted means. We conclude that relative naturalness indicator values provide a simple but reliable tool for estimating habitat deterioration.

Wydawca

-

Rocznik

Tom

65

Numer

1

Opis fizyczny

p.1-13,fig.,ref.

Twórcy

autor
  • Institute of Plant Sciences, University of Graz, A-8010 Graz, Holteigasse 6, Austria
  • Institute of Ecology and Botany, MTA Centre for Ecological Research, H-2163 Vacratot, Alkotmany utca 2-4, Hungary
autor
  • Department of Ecology, University of Szeged, H-6726 Szeged, Kozep fasor 52, Hungary
autor
  • Department of Botany, Szent Istvan University, H-2100 Godollo Pater K. u. 1, Hungary
autor
  • Department of Natural History, Janus Pannonius Museum, H-7621 Pecs, Szabadsag u. 2, Hungary
autor
  • Department of Ecology, University of Pecs, H-7624 Pecs, Ifjusag utja 6, Hungary
autor
  • Medical School, University of Pecs, H-7624 Pecs, Szigeti ut 12, Hungary
autor
  • Institute of Plant Sciences, University of Graz, A-8010 Graz, Holteigasse 6, Austria
autor
  • Institute of Plant Sciences, University of Graz, A-8010 Graz, Holteigasse 6, Austria
autor
  • Department of Ecology, University of Szeged, H-6726 Szeged, Kozep fasor 52, Hungary

Bibliografia

  • Angermeier P.L. 2000 — The natural imperative for biological conservation — Conserv. Biol. 14: 373–381.
  • Barczi A., Penksza K., Czinkota I., Néráth M. 1997 — A study of connection between certain phytoecological indicators and soil characteristics in the case of the Tihany peninsula — Acta Bot. Hung. 40: 1–14.
  • Bartha S. 2002 —Describing vegetation changes with indicator values (In: Recent Hungarian botanical researches, Ed: É. Salamon-Abert) — PTE Növénytani Tanszék, Pécs, pp. 527–556 (in Hungarian).
  • Bodrogközy Gy. 1982 — Hydroecology of the vegetation of sandy forest-steppe character in the Emlékerdő at Ásotthalom — Acta Biol. Szeged. 28: 13–39.
  • Borhidi A. 1995 — Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora — Acta Bot. Hung. 39: 97–181.
  • Borhidi A., Csete S., Csiky J., Kevey B., Morschhauser T., Salamon-Albert É. 2000 — Bioindication and naturalness in plant communities (In: Vegetation and dynamics, Eds: K. Virágh, A. Kun) — MTA ÖBKI, Vácrátót, pp. 159–194 (in Hungarian).
  • Borhidi A., Kevey B., Lendvai G. 2012 — Plant communities of Hungary — Academic Press, Budapest, 544 pp.
  • Borhidi A., Sánta A. (Eds) 1999 — Red data book of the Hungarian plant communities II — TermészetBúvár Alapítvány Kiadó, Budapest, 404 pp. (in Hungarian).
  • Bölöni J., Molnár Zs., Horváth F., Illyés E. 2008 — Naturalness-based habitat quality of the Hungarian (semi-) natural habitats — Acta Bot. Hung. 50 (Suppl.): 149–160.
  • Bölöni J., Molnár Zs., Kun A. (Eds) 2011 — Habitat types of Hungary — MTA ÖBKI, Vácrátót, 441 pp. (in Hungarian).
  • Brūmelis G., Jonsson B.G., Kouki J., Kuuluvainen T., Shorohova E. 2011 — Forest naturalness in northern Europe: perspectives on processes, structures and species diversity — Silva Fenn. 45: 807–821.
  • Carignan V., Villard M-A. 2002 — Selecting indicator species to monitor ecological integrity: a review — Environ. Monit. Assess. 78: 45–61.
  • Conrad M.K., Tischew S. 2011 — Grassland restoration in practice: Do we achieve the targets? A case study from Saxony-Anhalt/Germany — Ecol. Eng. 37: 1149–1157.
  • Cseresnyés I., Cseresnyés-Bózsing E., Tamás J., Barina Z., Csontos P. 2014 — Effect of Austrian pine on naturalness and succession of vegetation in reclaimed bauxite quarries — App. Ecol. Environ. Res. 12: 931–946.
  • Diekmann M. 1995 — Use and improvement of Ellenberg's indicator values in deciduous forests of the Boreo-nemoral zone in Sweden — Ecography, 18: 178–189.
  • Diekmann M. 2003 — Species indicator values as an important tool in applied plant ecology: a review — Basic Appl. Ecol. 4: 493–506.
  • Dierschke H. 1984 — Natürlichkeitsgrade von Pflanzengesellschaften unter besonderer Berücksichtigung der Vegetation Mitteleuropas — Phytocoenologia, 12: 173–184.
  • Dövényi Z. (Ed) 2010 — Cadaster of the asic landscape units of Hungary — MTA FKI, Budapest, 876 pp. (in Hungarian).
  • Dzwonko Z. 2001 — Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values — J. App. Ecol. 38: 942–951.
  • Ellenberg H. 1948 — Unkrautgesellschaften als Maß für den Säuregrad, die Verdichtung und andere Eigenschaften des Ackerbodens — Ber. Landtechnik, 4: 130–146.
  • Ellenberg H. 1950 — Landwirtschaftliche Pflanzensoziologie I. Unkrautgemeinschaften als Zeiger für Klima und Boden — Ulmer Verlag, Stuttgart, 141 pp.
  • Ellenberg H., Weber H E., Düll R., Wirth V., Werner W., Paulißen D. 1992 — Zeigerwerte von Pflanzen in Mitteleuropa — Scr. Geobot. 18: 1–248.
  • Erdős L., Cserhalmi D., Bátori Z., Kiss T., Morschhauser T., Benyhe B., Dénes A. 2013 — Shrub encroachment in a wooded-steppe mosaic: combining GIS methods with landscape historical analysis — Appl. Ecol. Environ. Res. 11: 371–384.
  • Erdős L., Tölgyesi Cs., Cseh V., Tolnay D., Cserhalmi D., Körmöczi L., Gellény K., Bátori Z. 2015a — Vegetation history, recent dynamics and future prospects of a Hungarian sandy forest-steppe reserve: forest-grassland relations, tree species composition and size-class distribution — Community Ecol. 16: 95–105.
  • Erdős L., Tölgyesi Cs., Dénes A., Darányi N., Fodor A., Bátori Z., Tolnay D. 2014 — Comparative analysis of the natural and semi-natural plant communities of Mt Nagy and other parts of the Villány Mts (south Hungary) — Thaiszia J. Bot. 24: 1–21.
  • Erdős L., Tölgyesi Cs., Körmöczi L., Bátori Z. 2015b — The importance of forest patches in supporting steppe-species: a case study from the Carpathian Basin — Pol. J. Ecol. 63: 213–222.
  • Ewald J. 2003 — The sensitivity of Ellenberg indicator values to the completeness of vegetation relevés — Basic Appl. Ecol. 4: 507–513.
  • Fekete G., Somodi I., Molnár Zs. 2010 — Is chorological symmetry observable within the forest steppe biome in Hungary? A demonstrative analysis of floristic data — Community Ecol. 11: 140–147.
  • Fränzle O. 2006 — Complex bioindication and environmental stress assessment — Ecol. Indic. 6: 114–136.
  • Grime J.P. 1977 — Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory — Am. Nat. 111: 1169–1194.
  • Grime J.P. 1979 — Plant strategies and vegetation processes — John Wiley and Sons, Chichester, 222 pp.
  • Hermy M., Honnay O., Firbank L., Grashof-Bokdam C., Lawesson J.E. 1999 — An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation — Biol. Conserv. 91: 9–22.
  • IBM Corp. 2013 — IBM SPSS Statistics for Windows, Version 22.0. — IBM Corp., Armonk.
  • Illyés E., Bölöni J. (Eds) 2007 — Slope steppes, loess steppes and forest steppe meadows in Hungary — Magánkiadás, Budapest, 236 pp (in Hungarian, English abstract).
  • Iversen J. 1936. — Biologische Pflanzentypen als Hilfsmittel in der Vegetationsforschung. Dissertation — University of Copenhagen, Copenhagen, 224 pp.
  • Juhász-Nagy P. 1986 — The lack of an operative ecology, its need and tasks — Akadémiai Kiadó, Budapest, 250 pp. (in Hungarian).
  • Käfer J., Witte J-P.M. 2004 — Cover-weighted averaging of indicator values in vegetation analyses — J. Veg. Sci. 15: 647–652.
  • Kim Y-M., Zerbe S., Kowarik I. 2002 — Human impact on flora and habitats in Korean rural settlements — Preslia, 74: 409–419.
  • Klaus V.H., Kleinebecker T., Boch S., Müller J., Socher S., Prati D., Fischer M., Hölzel N. 2012 — NIRS meets Ellenberg's indicator values: Prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics — Ecol. Indic. 14: 82–86.
  • Klotz S., Kühn I. 2002 — Indikatoren des anthropogenen Einflusses auf die Vegetation — Schriftenreihe für Vegetationskunde, 38: 241–246.
  • Kolkwitz R., Marsson M. 1902 — Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna — Mitt. a. d. Königl. Prüfungsanst. f. Wasserversorg. u. Abwasserbes. 1: 33–72.
  • Kowarik I. 1990 — Some responses of flora and vegetation to urbanization in Central Europe (In: Urban ecology. Plants and plant communities in urban environments, Eds: H. Sukopp, S. Hejný, I. Kowarik) — SPB Academic, The Hague, pp. 45–74.
  • Lájer K., Botta-Dukát Z., Csiky J., Horváth F., Szmorad F., Bagi I., Dobolyi K., Hahn I., Kovács J.A., Rédei T. 2007 — Hungarian phytosociological database (COENODATREF): Sampling methodology, nomenclature and its actual stage — Ann. Bot. (Roma) 7: 27–40.
  • Lehmann A. 1979 — Geographical characteristics of the Villány Mts — Földrajzi Közlem. 103: 276–281 (in Hungarian).
  • Lengyel A., Purger D., Csiky J. 2012 — Classification of mesic grasslands and their transitions of South Transdanubia (Hungary) — Acta Bot. Croat. 71: 31–50.
  • Machado A. 2004 — An index of naturalness — J. Nat. Conserv. 12: 95–110.
  • McRoberts R.E., Winter S., Chirici G., LaPoint E. 2012 — Assessing forest naturalness — Forest Sci. 58: 294–309.
  • Molnár Zs., Biró M., Bartha S., Fekete G. 2012 — Past trends, present state and future prospects of Hungarian forest-steppes (In: Eurasian steppes. Ecological problems and livelihoods in a changing world, Eds: M.J.A Werger, M. A van Staalduinen) — Springer, Berlin, pp 209–252.
  • Morschhauser T. 1995 — Applications of isodegradation curves in nature conservation — Acta Bot. Hung. 39: 393–405.
  • Möller H. 1992 — Zur Verwendung des Medians bei Zeigerwertberechnungen nach Ellenberg — Tuexenia 12: 25–28.
  • Müller J., Engel H., Blaschke M. 2007 — Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany — Eur. J. For. Res. 126: 513–527.
  • Parkes D., Newell G., Cheal D. 2003 — Assessing the quality of native vegetation: The “habitat hectares” approach — Ecol. Manage. Restor. 4: 29–38.
  • Reif A., Walentowski H. 2008 — The assessment of naturalness and its role for nature conservation and forestry in Europe. — Waldökologie, Landschaftsforschung und Naturschutz, 6: 63–76.
  • Schaffers A.P., Sýkora K.V. 2000 — Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements — J. Veg. Sci. 11: 225–244.
  • Seidling W., Fischer R. 2008 — Deviances from expected Ellenberg indicator values for nitrogen are related to N throughfall deposition in forests — Ecol. Indic. 8: 639–646.
  • Sengl P., Magnes M. 2008 — Halbtrockenrasen in St. Anna am Aigen (Südoststeiermark): Relikte einer gefährdeten Kulturlandschaft — Mitt. Naturwiss. Ver. Steiermark, 138: 255–286.
  • Sengl P., Magnes M., Wagner V., Erdős L., Berg C. 2016 — Only large and highly-connected grasslands achieve plant conservation targets in an agricultural matrix — Tuexenia, 36: 167–190.
  • Sengl P., Wagner V., Magnes M. 2015 — Semi-dry grassland restoration in the SE Alpine Foreland of Austria: A study of early spontaneous colonisation patterns — Hacquetia, 14: 97–112.
  • Seregélyes T., Csomós S.Á. 1995 — How to make vegetation maps — Tilia, 1: 158–169 (in Hungarian).
  • Simon T. 1988 — Naturalness categories of the Hungarian flora — Abstr. Bot. 12: 1–23 (in Hungarian).
  • Simon T. 2000 — Key to the vascular flora of Hungary — Nemzeti Tankönyvkiadó, Budapest, 846 pp. (in Hungarian).
  • Sukopp H. 1969 — Der Einfluss des Menschen auf die Vegetation — Vegetatio, 17: 360–371.
  • Szilárd J. 1981 — Climatic conditions (In: The Transdanubian Hills. South Transdanubia, Ed: L. Ádám, S. Marosi, J. Szilárd) — Akadémiai Kiadó, Budapest, pp. 137–169 (in Hungarian).
  • Tölgyesi Cs., Bátori Z., Erdős L. 2014 — Using statistical tests on relative ecological indicators to compare vegetation units — different approaches and weighting methods — Ecol. Indic. 36: 441–446.
  • Tölgyesi Cs., Körmöczi L. 2012 — Structural changes of a Pannonian grassland plant community in relation to the decrease of water availability — Acta Bot. Hung. 54: 413–431.
  • Török K., Szitár K. 2010 — Long-term changes of rock grassland communities in Hungary — Community Ecol. 11: 68–76.
  • Vargha A., Torma B., Bergman L.R. 2015 — ROPstat: A general statistical package useful for conducting person-oriented analyses — J. Person-Oriented Res. 1: 87–98.
  • Willner W., Kuzemko A., Dengler J., Chytrý M., Bauer N., Becker T., Biţă-Nicolae C., Botta-Dukát Z., Čarni A., Csiky J., Igić R., Kącki Z., Korotchenko I., Kropf M., Krstivojević-Ćuk M., Krstonošić D., Rédei T., Ruprecht E., Schratt-Ehrendorfer L., Semenishchenkov Y., Stančić Z., Vashenyak Y., Vynokurov D., Janišová M. 2017 — A higher-level classification of the Pannonian and western Pontic steppe grasslands (Central and Eastern Europe) — Appl. Veg. Sci. 20: 143–158.
  • Willner W., Sauberer N., Staudinger M., Grass V., Kraus R., Moser D., Rötzer H., Wrbka T. 2013 — Syntaxonomic revision of the Pannonian grasslands of Austria. Part II: Vienna Woods (Wienerwald) — Tuexenia, 33: 421–458.
  • Winter S. 2012 — Forest naturalness assessment as a component of biodiversity monitoring and conservation management — Forestry, 85: 293–304.
  • Winter S., Fischer H.S., Fischer A. 2010 — Relative quantitative reference approach for naturalness assessments of forests — Forest Ecol. Manag. 259: 1624–1632.
  • Wulf M. 1997 — Plant species as indicators of ancient woodland in northwestern Germany — J. Veg. Sci. 8: 635–642.
  • Zelený D., Schaffers A.P. 2012 — Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses — J. Veg. Sci. 23: 419–431.
  • Zentralanstalt für Meteorologie und Geodynamik 2015 — Klimadaten von Österreich 1971–2000 — URL: http://www.zamg.ac.at/fix/klima/oe7100/klima2000/klimadaten_oesterreich_1971_frame1.htm (accessed 03.06.2015).
  • Zonneveld I.S. 1983 — Principles of bio-indication — Environ. Monit. Assess. 3: 207–217.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-c7a73d98-7010-4346-8f8e-3b6b4fdcb318
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.