PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 5 |

Tytuł artykułu

Improved in vitro propagation of Hyacin-thus orientalis L. using fruits containing immature zygotic embryos and tender leaf sheath as explants

Treść / Zawartość

Warianty tytułu

PL
Ulepszone rozmnażanie in vitro Hyacin-thus orientalis L. przy użyciu owoców zawierających niedojrzałe zarodki zygotyczne oraz pochwy liściowej jako eksplantów

Języki publikacji

EN

Abstrakty

EN
Hyacinthus genus is an important group of ornamental plants that bear white, yellow, pink, red or purple coloured flowers. It has about 2000 species spread around the world that are grown commercially. Although, plant occurs naturally in Turkey yet efforts have not been made to adapt it for open field cultivation. There is need to transfer and establish these plants from wild to fields for commercial use through in vitro and ex vitro approaches, that will help local economy profitably. This study reports in vitro culture of Hyacinthus orientalis L. subsp. orientalis; using fruits containing immature zygotic embryos cultured on MS medium containing varying concentrations of Thidiazuron (TDZ) with and without 0.2 mg l-1 naphthaleneacetic acid (NAA) supplemented with 20 or 40 g l-1 sucrose. The study also reports induction of bulblets on tender leaf sheaths on MS medium containing different concentrations of benzylaminopurine (BAP) + 0.1 mg l-1 NAA supplemented with 30 g l-1 sucrose. The maximum bulblet regeneration (40%) with 31.33 bulblets/explant was noted on MS medium containing 0.15 mg l-1 TDZ supplemented with 40 g l-1 sucrose. Whereas, the best bulblet regeneration on tender leaf sheath explants was noted on 1.5 mg l-1 BAP + 0.1 mg l-1 NAA with 2.97 bulblets per explant of 0.55 cm bulb diameter and 1.20 leaves per bulblet. These bulblets were cultured singly on MS medium containing 20 mg l-1 GA3 (Gibberellic acid) + 50 g l-1 sucrose and attained a diameter of 0.75–1.00 cm in 30 days time. The bulbs regenerated on both explants were successfully rooted and acclimatised in plant growth chamber using peat moss followed by their transfer to open field conditions.
PL
Rodzaj Hyacinthus jest ważną grupą roślin ozdobnych, które mają biało, żółto, różowo, czerwono lub fioletowo zabarwione kwiaty. Na świecie istnieje około 2000 gatunków uprawianych w celach handlowych. Chociaż roślina ta występuje w warunkach naturalnych w Turcji, to konieczne są wysiłki, aby zaadaptować ją do uprawy na otwartym polu. Istnieje potrzeba, aby przenieść i zasiedlić te rośliny z warunków dzikich do polowych za pomocą metod in vitro i ex vitro, co wspomoże lokalną gospodarkę. Badanie dotyczy hodowli Hyacinthus orientalis L. subsp. orientalis w warunkach in vitro, przy użyciu owoców zawierających niedojrzałe zarodki zygotyczne wyhodowane na podłożu MS zwierającym różne stężenia Thidiazuronu (TDZ) oraz z i bez 0,2 mg l-1 kwasu naftylooctowego (NAA) z dodatkiem 20 lub 40 g l-1 sacharozy. Badanie dotyczy również indukcji cebulek na pochwie liściowej na podłożu MS zawierającym różne stężenia benzyloaminopuryny (BAP) + 0.1 mg l-1 NAA z dodatkiem 30 g l-1 sacharozy. Maksymalna regeneracja cebulek (40%) przy 31,33 cebulkach/ eksplantach została zaobserwowana na podłożu MS zawierającym 0,15 mg l-1 TDZ z dodatkiem 40 g l-1 sacharozy. Natomiast najlepszą regenerację cebulek na eksplantach z pochewek liściowych zaobserwowano na 1,5 mg l-1 BAP + 0,1 mg l-1 NAA przy 2.97 cebulkach na eksplant o średnicy cebulki 0,55 cm i 1,20 liściach na cebulkę. Cebulki te były hodowane pojedynczo na podłożu MS zawierającym 20 mg l-1 GA3 (kwas giberelinowy) + 50 g l-1 sacharozy i osiągały średnicę 0,75–1,00 cm w ciągu 30 dni. Cebulki zregenerowane na obydwu eksplantach były dobrze zakorzenione i zaaklimatyzowały się w komorze hodowlanej z mchem torfowym, po czym następowało przeniesienie do warunków otwartego pola.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

5

Opis fizyczny

p.15-30,fig.,ref.

Twórcy

autor
  • Department of Field Crops, Faculty of Agriculture, Dicle University, 21280 Diyarbakir, Turkey
autor
  • Dicle University, Diyarbakir, Turkey
autor
  • Ankara University, Ankara, Turkey

Bibliografia

  • Adkins, T.W., Kunanuvatchaidach, R., Gray, S.J., Adkins, N.L. (1993). Effect of ethylene and culture environment on rice callus proliferation. J. Exp. Bot., 44, 1829–1835.
  • Amano, M., Tsutsui, K. (1980). Propagation of hyacinth by hot temperature treatment. Acta Hortic., 279–287.
  • Anonymous (2016). http://www.gardeningknowhow.com/ornamental/bulbs/hyacinth/how-topropagate-hyacinth. htm Ault, R.J. (1995). In vitro propagation of Eucomis autumnalis, E. comosa and E. zambesiaca by twin scaling. HortSci., 30, 1441–1442.
  • Bach, A. (1992). Somatic embryogenesis from zygotic embryos and meristems of Fresis hybrids. Acta Hortic., 325, 429–434.
  • Barpete, S., Aasim, M., Khawar, K.M., Ozcan, S.F., Ozcan, S. (2014). Preconditioning effect of cytokinins on in vitro multiplication of embryonic node of grass pea (Lathyrus sativus L.) cultivar Gurbuz. Turk. J. Biol., 38(4), 485–492.
  • Bassuner, B., Lam, R., Lukowitz, W., Yeung, E. (2007). Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Rep., 26, 1–11.
  • Beckett, B. (1999). Cruciferae, illustrated flora of Mallorca. Ed. Moll. Palma, Mallorca, 60–69.
  • Benschop, M., Kamenetsky, R., Le Nard, M., Okubo, H., De Hertogh, A. (2010). The Global Flower Bulb Industry: Production, Utilization, Research. Horticultural Reviews, Vol. 36 Edited by Jules Janick, Wiley-Blackwell. Bryan, J.E. (1989). Fritillaria. Bulbs, Volume I–II, Timber Press, Portland, Oregon.
  • Cheng, Z., Zhu, S., Gao, X., Zhang, X. (2010). Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis. Plant Cell Rep., 29, 927–960.
  • Cho, J., Lee, S.K., Ko, S., Kim, H.K., Jun, S.H., Lee, Y.H., Bhoo, S.H., Lee, K.W., An, G., Hahn, T.R., Jeon, J.S. (2005). Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep., 24, 225–236.
  • Chung, C.H., Chung, Y.M., Yang, S.J., Ko, E.K., Jeong, S.J., Nam, J.S., Kim, G.T, Yi, Y.B. (2006). Effects of storage temperature and sucrose on bulblet growth, starch and protein contents in in vitro cultures of Hyacinthus orientalis. Biol. Plantarum, 50, 346–351.
  • Geng, P.P., La, H., Wang, H., Stevens, E.J.C. (2008). Effect of sorbitol concentration on regeneration of embryogenic calli in upland rice varieties (Oryza sativa L.). Plant Cell Tiss. Org. Cult., 92, 303–313.
  • Hartmann, H.T., Kester, D.E., Davies, F.T., Geneve, R.L. (1990). Plant propagation: principles and practices. Prentice Hall, Englewood Cliffs, NJ. Hirose, T., Makoto, T., Tomio, T. (2002). Cell wall invertase in developing rice caryopsis: molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol., 43, 452–459.
  • Huang, W.L., Lee, C.H., Chen, Y.R. (2012). Levels of endogenous abscisic acid and indole-3- -acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tiss. Org. Cult., 108, 257–263.
  • Huang, W.L., Liu, L.F. (2002). Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Bot. Bull. Acad Sin., 43, 107–113.
  • Hussey, G. (1975). Propagation of hyacinths by tissue culture. Sci. Hort., 3, 21–28.
  • Ji, X., Van den Ende, W., Laere, A., Cheng, S., Bennett, J. (2005). Structure, evolution, and expression of the two invertase gene families of rice. J. Mol. Evol., 60, 615–634.
  • Khawar, K.M., Ozcan, S. (2002). Effect of indole‐3‐Butyric Acid on in vitro root development in lentil (Lens culinaris M.). Turk. J. Bot., 26, 109–111.
  • Khawar, K.M., Sancak, C., Uranbey, S., Ozcan, S. (2004). Effect of thidiazuron on shoot regeneration from different explants of lentil (Lens culinaris M.) via organogenesis. Turk. J. Bot., 28, 421–426.
  • Lee, S.K., Chung, C.H., Chung, Y.M., Kim, D.H., Jeong, S.J., Nam, J.S., Kim, G.T., Yi, Y.B. (2007). Efficient bulblet regeneration and growth from bulb scale of Hyacinthus orientalis L. cv. Pink Pearl cultured in vitro. J. Life Sci., 17, 1336–1340.
  • Lu, W., Enomoto, K., Fukunaga, Y., Kuo, C. (1988). Regeneration of tepals, stamens and ovules in explants from perianth of Hyacinthus orientalis L. importance of explant age and exogenous hormones. Planta, 175, 478–484.
  • Lyndon, R.F. (1994). Control of organogenesis at the shoot apex. New Phytol., 128, 1–18.
  • Mukhtar, S., Arshad, M., Kumar Basu, S., Hassan, F., Ahmed, M., Asif, M. (2012). Influence of capsule position on seed traits and oil content of linseed (Linum usitatissimum L.). Plant Knowl. J., 1(2), 52–56.
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497.
  • Pan, Z.Y., Zhu, S.P., Guan, R., Deng, X.X. (2010). Identification of 2,4-Dresponsive proteins in embryogenic callus of valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress. Plant Cell Tiss. Org. Cult., 103, 145–153.
  • Petrasek, J., Friml, J. (2009). Auxin transport routes in plant development. Development, 136, 2675–2688.
  • Pierik, R.L.M., Post, A.J.M. (1975). Rapid vegetative propagation of Hyacinthus orientalis L. in vitro. Sci, Hortic., 3, 293–297.
  • Pierik, R.L.M., Woets, J. (1971). Regeneration of isolated bulb scale segments of hyacinth. Acta Hort. (ISHS), 23, 423–428.
  • Poethig, R.S. (1990). Phase change and the regulation of shoot morphogenesis in plants. Science, 250, 923–930.
  • Ptak, A., Tahchy, A.E., Dupire, F., Boisbrun, M., Henry, M., Chapleur, Y., Mos, M., LaurainMattar, D. (2009). LCMS and GCMS for the screening of alkaloids in natural and in vitro extracts of Leucojum aestivum. J. Nat. Prod., 72(1), 142–147.
  • Pua, E.C., Chong, C. (1984). Requirement for sorbitol (D-glucitol) as carbon source for in vitro propagation of Malus robusta No. 5. Can. J. Bot., 62, 1545–1549.
  • Rademacher, E., Lokerse, A., Schlereth, A., Llavata-Peris, C., Bayer, M., Kientz, M., Freire-Rios, A., Borst, J., Lukowitz, W., Jurgens, G., Weijers, D. (2012). Different auxin response machineries control distinct cell fates in the early plant embryo. Dev. Cell., 22, 211–222.
  • Reid, J.B. (1986). Gibberellin mutants. In: Plant gene research, Vol 3., King, P.J., Blonstein, A.D. (eds). Springer-Verlag, New York, pp 1–34.
  • Roitsch, T. (1999). Source-sink regulation by sugar and stress. Curr. Opin. Plant Biol., 2, 198–206.
  • Snedecor, G.W., Cochran, W.G. (1967). Statistical methods. The Iowa State Univ. Press, Iowa. USA, 327–329.
  • Sun, X.M., Li, Y., Yang, H.G., Cui, W.S., Wang, Y.B. (2010). Rapid micropropagation system via in vitro culture in Hyacinthus orientalis L. J. Shenyang Agricult. Univ., 1, 33–36.
  • Steeves, T.A., Sussex, I.M. (1989). Patterns in Plant Development, 2nd edn. Cambridge: Cambridge University Press.
  • Tubives (2016). http://www.tubives.com/index.php?sayfa = 1&tax_id = 9120 Vanneste, S., Friml, J. (2009). Auxin: a trigger for change in plant development. Cell, 136, 1005–1021.
  • Wang, Y.Q., Wei, X.L., Xu, H.L., Chai, C.L., Meng, K., Zhai, H.L., Sun, A.J., Peng, Y.G., Wu, B., Xiao, G.F., Zhu, Z. (2008). Cell-wall invertase form rice are differentially expressed in caryopsis during the grain filling stage. J. Int. Plant Biol., 50, 466–474.
  • Wang, E., Xu, X., Zhang, L., Zhang, H., Lin, L., Wang, Q., Li, Q., Ge, S., Lu, B.R., Wang, W., He, Z. (2010). Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evol. Biol., 10, 108–110.
  • Zhao, Z., Andersen, S., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S., Lohmann, J. (2010). Hormonal control of the shoot stem-cell niche. Nature, 465, 1089–1181.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c7a356a4-44a8-44d1-8823-b574c1e7e3fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.