PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 4 |

Tytuł artykułu

Sucrose induces arabinogalactan protein secretion by Beta vulgaris L. cell suspension cultures

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to determine if the increase of the initial sucrose concentration (ISC) improves cell growth and arabinogalactan protein (AGP) secretion of Beta vulgaris L. cultures. ISC tested were 43.8, 87.6 and 131.4 mM. Cell growth and specific growth rate were improved increasing the ISC. Cell cultures grown with ISC 43.8 mM were fed with sucrose, and cellular growth was enhanced twofold, revealing the stimulatory effect of sucrose on cell growth. The AGP secretion was stimulated, increasing the ISC. This event was partially associated with the exponential growth phase of the culture. AGP precipitation with Yariv reagent of cell cultures inhibited cell growth without changes in viability. The assay of sucrose feeding confirmed the relationship between cell growth and AGP secretion. These observations suggest that AGPs may be required for cell division. The increase of AGP secretion by ISC coincided with a higher cellular aggregation, suggesting a possible role of AGP as cellular adhesion molecules. To determine whether AGP secretion is also stimulated by an osmotic effect, mannitol was fed to raise the osmotic potential from 23.78 to 95.97 mOsm kg⁻¹. Mannitol was not used for cell growth, but AGP secretion was stimulated sixfold in relation to the control. These results are important for understanding the possible factors involved in the AGP secretion of plant cell culture and that may be considered to improve the AGP production.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

4

Opis fizyczny

p.757-764,fig.,ref.

Twórcy

  • Departamento de Biotecnologı´a, Centro de Desarrollo de Productos Bio´ticos, Instituto Polite´cnico Nacional, P.O. Box 24, Yautepec, Morelos 62730, Mexico
  • Departamento de Biotecnologı´a, Centro de Desarrollo de Productos Bio´ticos, Instituto Polite´cnico Nacional, P.O. Box 24, Yautepec, Morelos 62730, Mexico
  • Departamento de Biotecnologı´a, Centro de Desarrollo de Productos Bio´ticos, Instituto Polite´cnico Nacional, P.O. Box 24, Yautepec, Morelos 62730, Mexico
  • Departamento de Biotecnologı´a, Centro de Desarrollo de Productos Bio´ticos, Instituto Polite´cnico Nacional, P.O. Box 24, Yautepec, Morelos 62730, Mexico
  • Departamento de Biotecnologı´a, Centro de Desarrollo de Productos Bio´ticos, Instituto Polite´cnico Nacional, P.O. Box 24, Yautepec, Morelos 62730, Mexico

Bibliografia

  • Cleary AL (2001) Plasma membrane-cell wall connections: Roles in mitosis and cytokinesis revealed by plasmolysis of Tradescantia virginiana leaf epidermal cells. Protoplasma 215:21–34. doi: 10.1007/BF01280301
  • Darjania L, Ichise N, Ichikawa S, Okamoto T, Okuyama H, Thompson GA (2002) Dynamic turnover of arabinogalactan proteins in cultured Arabidopsis cells. Plant Physiol Biochem 40:69–79. doi:10.1016/S0981-9428(01)01336-5
  • de Paiva Neto VB, Otoni WC (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci Hortic 97:193–202. doi:10.1016/S0304-4238(02)00231-5
  • Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan-proteins: structure, biosynthesis, and function. Annu Rev Plant Physiol 34:47–270. doi:10.1146/annurev.pp.34.060183.000403
  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5
  • García-Gómez BL, Campos F, Hernández M, Covarrubias AA (2000) Two bean cell wall proteins more abundant during water deficit are high in proline and interact with a plasma membrane protein. Plant J 22:277–288. doi:10.1046/j.1365-313x.2000.00739.x
  • George EF, Hall MA, de Klerk GJ (2008) The components of plant tissue culture media. II: organic additions, osmotic and pH effects and support systems. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, vol 1. The background, 3rd edn. Springer, Berlin, pp 115–173. doi:10.1007/978-1-4020-5005-3_4
  • Günter EA, Ovodov YS (2003) Production of polysaccharides by Silene vulgaris callus culture depending on carbohydrates of the medium. Biochemistry (Moscow) 68:882–889. doi:10.1023/A: 1025751015684
  • Kilayri JM, Bahrany AM (2002) Callus growth and proline accumulation in response to sorbitol and sucrose-induced osmotic stress in rice. Biol Plant 45:609–611. doi:10.1023/A:1022380827034
  • Komalavilas P, Zhu JK, Nothnagel EA (1991) Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. J Biol Chem 266:15956–15965
  • Kreuger M, van Holst GJ (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197:135–141. doi:10.1007/BF00239949
  • Kreuger M, Postma E, Brouwer Y, van Holst GJ (1995) Somatic embryogenesis of Cyclamen persicum in liquid medium. Physiol Plant 94:605–612. doi:10.1111/j.1399-3054.1995.tb00974.x
  • Lamport DT, Kieliszewiski MJ, Showalter AM (2006) Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol 169:479–492. doi: 10.1111/j.1469-8137.2005.01591.x
  • Langan KJ, Nothnagel EA (1997) Cell surface arabinogalactan-proteins and their relation to cell proliferation and viability. Protoplasma 96:87–98. doi:10.1007/BF01281062
  • Lee KJD, Sakata Y, Mau SL, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patents. Plant Cell 17:3051–3065. doi:10.1105/tpc.105.034413
  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L microspore culture). Plant Cell Rep 24:691–698. doi:10.1007/s00299-005-0013-5
  • Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–9
  • Mellinger CG, Cipriani TR, Noleto GR, Carbonero ER, Oliveira MB M, Gorin PAJ, Iacomini M (2008) Chemical and immunological modifications of an arabinogalactan present in tea preparations of Phyllanthus niruri after treatment with gastric fluid. Int J Biol Macromol 43:115–120. doi:10.1016/j.ijbiomac.2008.04.001
  • Nergard CS, Diallo D, Michaelsen TE, Malterud KE, Kiyohara H, Matsumoto T, Yamada H, Paulsen BS (2004) Isolation, partial characterization and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch Bip. ex Walp. J Ethnopharmacol 91:141–152. doi:10.1016/j.jep.2003.12.007
  • Pal A (2008) Arabinogalactan protein and arabinogalactan: Biomolecules with biotechnological and therapeutic potential. In: Ramawat KG, Mérillon JM (eds) Bioactives molecules and medicinal plant. Springer, Berlin, pp 255–270. doi:10.1007/978-3-540-74603-4_13
  • Park MH, Suzuki Y, Chono M, Knox JP, Yamaguchi I (2003) CsAGP1, a gibberellin-responsive gene from cucumber hypocotyls, encodes a classical arabinogalactan protein and is involved in stem elongation. Plant Physiol 131:1450–1459. doi: 10.1104/pp.015628
  • Rodríguez-Monroy M, Galindo E (1999) Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in a stirred tank. Enzyme Microb Technol 24:687–693. doi: 10.1016/S0141-0229(99)00002-2
  • Rumyantseva NI (2005) Arabinogalactan proteins: involvement in plant growth and morphogenesis. Biochemistry Mosc 70:1301–1317. doi:10.1007/s10541-005-0228-7
  • Serpe MD, Nothnagel EA (1994) Effects of Yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 193:542–550. doi:10.1007/BF02411560
  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417. doi:10.1007/PL00000784
  • Su-May Y (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693
  • Trejo-Tapia G, Hernández-Trujillo R, Trejo-Espino JL, Jimenéz-Aparicio A, Rodríguez-Monroy M (2003) Analysis of morphological characteristics of Solanum chrysotrichum cell suspension cultures. World J Microbiol Biotechnol 19:929–932. doi: 10.1023/B:WIBI.0000007323.34363.93
  • van Holst GJ, Clarke A (1985) Quantification of arabinogalactan-protein in plant extracts by single radial diffusion gel. Anal Biochem 148:446–450. doi:10.1016/0003-2697(85)90251-9
  • Willats WG, Knox JP (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β-glucosil Yariv reagent with seedlings of Arabidopsis thaliana. Plant J 9:919–925. doi:10.1046/j.1365-313X.1996.9060919.x
  • Wisniewska E, Majewska-Sawka A (2007) Arabinogalactan-proteins stimulate the organogenesis of guard cell protoplasts-derived callus in sugar beet. Plant Cell Rep 26:1457–1467. doi:10.1007/s00299-007-0348-1
  • Zhang YH, Zhong JJ, Yu JT (1996) Enhancement of ginseng saponin production in suspension cultures of Panax notoginseng: manipulation of medium sucrose. J Biotechnol 51:49–56. doi:10.1016/0168-1656(96)01560-X
  • Zhao ZD, Tan L, Showalter AM, Lamport DTA, Kieliszewski MJ (2002) Tomato LeAGP-1 arabinogalactan-protein purified from transgenic tobacco corroborates the Hyp contiguity hypothesis. Plant J 31:431–444. doi:10.1046/j.1365-313X.2002.01365.x
  • Zhu JK, Bressan RA, Hasegawa PM (1993) Loss of arabinogalactan proteins from the plasma membrane of NaCl-adapted tobacco cells. Planta 190:221–226. doi:10.1007/BF00196614

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c7936b76-2a84-42f6-9b6a-25e77114dada
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.