PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 41 | 3 |

Tytuł artykułu

Changes of globins expression in tongue sole, Cynoglossus semilaevis (Actinopterygii: Pleuronectiformes: Cynoglossidae) in response to short-term hypoxia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Fishes live in the aquatic systems which are first affected by low or temporally changing O2 availability. Under hypoxia, the fish possess varieties of mechanism to ensure the uptake of an adequate amount of O2. Tongue sole, Cynoglossus semilaevis Günther, 1873, lives on the bottom of water where contain low O2 concentration, indicating that this species possess specific feature against hypoxia. In this study, we examined the mRNA expression of three globins in tongue sole under short-term hypoxia. Materials and methods. Using bioinformatics analysis, three globin genes including hemoglobin-α1 (Hb-α1), myoglobin (Mb), and cytoglobin (Cygb) were first obtained from tongue sole EST database. Then, their expression levels in different tissues of tongue sole under short-term hypoxia were detected using quantitative real-time PCR method. Results. Under short-term hypoxia, Hb-α1 significantly increased in all the tissues except intestine and stomach. The Cygb expression level was up-regulated from 5 min to 120 min, whilst changed to normal level at 36 h. Mb was only up-regulated in blood and heart at 120 min. But, as the hypoxia prolonged, there was a mild increase of Mb in blood, heart, spleen, and liver. Conclusion. The three globins of tongue sole were up-regulated in some tissues, but their rolemay be different in different stage of hypoxia. Hb and Cygb might play role in the earlier stage, while Mb might play role in the late stage of hypoxia.

Wydawca

-

Rocznik

Tom

41

Numer

3

Opis fizyczny

p.179-184,fig.,ref.

Twórcy

autor
  • School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China
autor
autor
autor
autor
autor
autor

Bibliografia

  • Blank M., Kiger L., Thielebein A., Gerlach F., Hankeln T., Marden M.C., Burmester T. 2011. Oxygen supply from the bird’s eye perspective: globin E is a respiratory protein in the chicken retina. Journal of Biology Chemistry 286 (30): 26507–26515. DOI: 10.1074/jbc.M111.224634
  • Borza T., Stone C., Gamperl A.K., Bowman S. 2009. Atlantic cod (Gadus morhua) hemoglobin genes: multiplicity and polymorphism. BMCGenetics 10: 51-65.DOI: 10.1186/1471-2156-10-51
  • Burmester T., Weich B., Reinhardt S., Hankeln T. 2000. A vertebrate globin expressed in the brain. Nature 404: 520–523. DOI: 10.1038/35035093
  • Burmester T., Ebner B., Weich B., Hankeln T. 2002. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Molecular Biology Evolution 19: 416–421.
  • Childress J.J., Seibel B.A. 1998. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. Journal of Experimental Biology 201: 1223–1232.
  • Fraser J., Mello L.V., Ward D., Rees H.H., Williams D.R., Fang Y., Brass A., Gracey A.Y., Cossins A.R. 2006. Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proceeding of National Academy of Science USA 103: 2977–2981. DOI: 10.1073/pnas.0508270103
  • Fuchs C., Burmester T., Hankeln T. 2006. The amphibian globin gene repertoire as revealed by the Xenopus genome. Biochemical and Biophysical Research Communications 337 (3–4): 216–223. DOI: 10.1159/000089884
  • Gray J.S., Wu R.S., Ying Y.O. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249–279. DOI: 10.3354/meps238249
  • Kajimura S., Aida K., Duan C. 2004. Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proceeding of National Academy of Science USA 102 (4): 1240–1245. DOI: 10.1073/pnas.0407443102
  • Levine B.D., Stray-Gundersen J. 2001. The effects of altitude training are mediated primarily by acclimatization, rather than by hypoxia exercise. Advances in Experimental Medicine Biology 502: 75–88.
  • Nikinmaa M., Rees B.B. 2005. Oxygen-dependent gene expression in fishes. American of Jouranl Physiology Regulatory Integrative and Comparative Physiology 288: R1079–R1090. DOI: 10.1152/ajpregu.00626.2004
  • Overbergh L., Giulietti A., Valckx D., Decallonne R., Bouillon R., Mathieu C. 2003. The use of realtime reverse transcriptase PCR for the quantification of cytokine gene expression. Journal of Biomolecular Techchniques 14: 33–43.
  • Qi Z.T., Nie P. 2008. Comparative study and expression analysis of the interferon gamma gene locus cytokines in Xenopus tropicalis. Immunogenetics 60 (11): 699–710. DOI: 10.1007/s00251-008-0326-y
  • Qi Z.T., Zhang Q.H., Wang Z.S., Wang A.M., Huang B., Chang M.X., Nie P. 2011. Cloning and expression analysis of a long type peptidoglycan recognition protein (PGRP-L) from Xenopus tropicalis. Zoological Research 32 (4): 371–378. DOI: 10.3724/SP.J.1141.2011.04371
  • Quinn N.L., Boroevich K.A., Lubieniecki K.P., Chow W., Davidson E.A., Phillips R.B., Koop B.F., Davidson W.S. 2010. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire. BMC Genomics 11: 539. DOI: 10.1186/1471-2164-11-539
  • Richards J.G. 2011. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. Journal of Experimental Biology 214: 191–199. DOI: 10.1242/jeb.047951
  • Roesner A., Hankeln T., Burmester T. 2006. Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). Journal of Experimental Biology 209: 2129–2137. DOI: 10.1242/jeb.02243
  • Roesner A., Mitz S.A., Hankeln T., Bumester T. 2008. Globin and hypoxia adaptation in the goldfish, Carassius auratus. FEBS Journal 275 (14): 3633–3643. DOI: 10.1111/j.1742-4658.2008.06508.x
  • Schmidt M., Gerlach F., Avivi A., Laufs T., Wystub S., Simpson J.C., Nevo E., Saaler-Reinhardt S., Reuss S., Hankeln T., Burmester T. 2004. Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. Journal of Biology Chemistry 279: 8063–8069. DOI: 10.1074/jbc.M310540200
  • Shao C.W., Chen S.L., Scheuring C.F., Xu J.Y., Sha Z.X., Dong X.L., Zhang H.B. 2010. Construction of two BAC libraries from half-smooth tongue sole Cynoglossus semilaevis and identification of clones containing candidate sexdetermination genes. Marine Biotechnology 12 (5): 558–568. DOI: 10.1007/s10126-009-9242-x
  • Timmerman C.M., Chapman L.J. 2004. Behavioral and physiological compensation for chronic hypoxia in the sailfin molly (Poecilia latipinna). Physiological and Biochemical Zoology 77: 601–610.
  • Ton C., Stamatiou D., Liew C.C. 2003. Gene expression profile of zebrafish exposed to hypoxia during development. Physiological Genomics 13: 97–106. DOI: 10.1152/physiolgenomics.00128.2002
  • Van den Meer D.L., van den Thillart G.E., Witte F., de Bakker M.A., Besser J., Richardson M.K., Spaink H.P., Leito J.T., Bagowski C.P. 2005. Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. American of Journal Physiology Regulatory Integrative and Comparative Physiology 289: R1512–R1519. DOI: 10.1152/ajpregu.00089.2005
  • Wawrowski A., Gerlach F., Hankeln T., Burmester T. 2011. Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. Journal of Comparative Physiology B 181: 199–208. DOI: 10.1007/s00360-010-0518-2
  • Wittenberg J.B., Wittenberg B.A. 2003. Myoglobin function reassessed. Journal of Experimental Biology 206: 2011–2020. DOI: 10.1242/jeb.00243

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c77e96b7-5555-4f85-963c-dd9dd9eb0bd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.