Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 1 |
Tytuł artykułu

Flowering biology and structure of floral nectaries in Galanthus nivalis L.

Treść / Zawartość
Warianty tytułu
Języki publikacji
In Poland Galanthus nivalis L. is partially protected. The flowers of this species are one of the first sources of nectar and pollen for insects from February to April. The aim of this study was to present the flowering biology as well as the topography, anatomical, and ultrastructural features of the floral nectary. The flower lifespan, the breeding system, and the mass of pollen and nectar produced by the flowers were determined. Examination of the nectary structure was performed using light, fluorescence, scanning and transmission electron microscopy. The flower of G. nivalis lives for about 30 days. The stamens and pistils mature simultaneously and during this time nectar is secreted. The anthers of one flower produced the large amount of pollen (4 mg). The breeding system of G. nivalis was found to be characterized by partial self-compatibility, outcrossing, and xenogamy. The nectary is located at the top of the inferior ovary. The nectary epidermal cells are characterized by striated cuticular ornamentation. Initially, the secreted nectar formed vesicle-like protuberances under the cuticle. The epidermal and parenchymal cells contain numerous plastids, mitochondria, dictyosomes, ER cisterns, and vesicles fused with the plasmalemma, which indicates granulocrine nectar secretion.
Opis fizyczny
Article 3486 [20p.], fig.,ref.
  • Department of Botany, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
  • Department of Botany, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
  • 1. Podbielkowski Z. Geografia roślin. Warszawa: WSiP; 1991.
  • 2. Nekovar J, Dalezios N, Koch E, Kubin E, Nejedlik P, Niedzwiedz T, et al. The history and current status of plant phenology in Europe. Helsinki: Vammalan Kirjapaino Oy; 2008.
  • 3. Piękoś-Mirkowa H, Mirek Z. Rośliny chronione. Warszawa: Multico; 2003.
  • 4. Rozporządzenie Ministra Środowiska z dnia 9 października 2014 r. w sprawie ochrony gatunkowej roślin. Dz. U. z 2014 r., poz. 1409.
  • 5. Ščepánková I, Hudák J. Leaf and tepal anatomy, plastid ultrastructure and chlorophyll content in Galanthus nivalis L. and Leucojum aestivum L. Plant Syst Evol. 2004;243(3– 4):211–219.
  • 6. Weryszko-Chmielewska E, Chwil M. Ecological adaptations of the floral structures of Galanthus nivalis L. Acta Agrobot. 2010;63(2):41–49.
  • 7. Kugler H. Blütenökologie. Stuttgart: Gustav Fischer Verlag; 1970.
  • 8. Daumann E. Das Blütennektarium der Monocotyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repert.1970;80:463–590.
  • 9. Dahlgren RMT, Clifford HT, Yeo PF. The families of the monocotyledons. Structure, evolution, and taxonomy. Berlin: Springer; 1985.
  • 10. Bernardello G. A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E, editors. Nectaries and nectar. Dordrecht: Springer; 2007. p. 19–128.
  • 11. Chwil M. Ecology of flowers and morphology of pollen grains of selected Narcissus varieties (Narcissus pseudonarcissus L. × Narcissus poëticus L.). Acta Agrobot. 2006; 59:107–122.
  • 12. Endress PK. Major evolutionary traits of monocot flowers. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, editors. Monocotyledons: systematics and evolution. Kew: Royal BotanicGardens; 1995. p. 43–79.
  • 13. Szafer W, Wojtusiakowa H. Kwiaty i zwierzęta: zarys ekologii kwiatów. Warszawa: Państwowe Wydawnictwo Naukowe PWN; 1969.
  • 14. Maak K, von Storch H. Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in northern Germany. Int J Biometeorol.1997;41:5–12.
  • 15. Sparks TH, Jeffree EP, Jeffree CE. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from theUK. Int J Biometeorol. 2000;44:82–87.
  • 16. Dafni A. Pollination ecology: a practical approach. Oxford: Oxford University Press; 1992.
  • 17. Jabłoński B. Metodyka badań obfitości nektarowania kwiatów i oceny miododajności roślin. Puławy: Oddział Pszczelnictwa Instytutu Sadownictwa i Kwiaciarstwa; 2003.
  • 18. Warakomska Z. Badania nad wydajnością pyłkową roślin. Pszczelnicze Zeszyty Naukowe. 1972;16:63–90.
  • 19. Jensen WA. Botanical histochemistry: principle and practice. San Francisco, CA: W.H. Freeman; 1962.
  • 20. Feder N, O’Brien TP. Plant microtechnique: some principles and new methods. Am J Bot. 1968;55:123–142.
  • 21. Wędzony M. Mikroskopia fluorescencyjna dla botaników. Cracow: Department of Plant Physiology, Polish Academy of Sciences; 1996. (Monografie; vol 5).
  • 22. Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–212.
  • 23. Defila C. Pflanzenphänologischer Kalender ausgewählter Stationen in der Schweiz. Zürich: Schweizerische Meteorologische Anstalt; 1992.
  • 24. Żuraw B, Chyżewska R, Rysiak K, Chernetskyy M. Blooming biology and visitation by pollinating insects of the snowdrop (Galanthus nivalis L.) flowers. In: Bogucka-Kocka A,Kocki J, Sowa I, editors. Book of abstracts: “Plant-the source of research material” – 2ndInternational Conference and Workshop; 2012 Oct 18–20; Lublin, Poland. Lublin: Polihymnia;2012: p. 374.
  • 25. Budnikov G, Kricsfalusy V. Bioecological study of Galanthus nivalis L. in the East Carpathians. Thaiszia Journal of Botany. 1994;4:49–75.
  • 26. Chudzik B, Snieżko R. Calcium ion presence as a trait of receptivity in tenuinucellar ovules of Galanthus nivalis L. Acta Biol Crac Ser Bot. 2003;45(1):133–141.
  • 27. Chudzik B, Snieżko R, Szaub J. Biology of flowering of Galanthus nivalis L. (Amaryllidaceae ).Ann Univ Mariae Curie-Skłodowska EEE Hortic 2002;10:1–10.
  • 28. Maurizio A, Grafl I. Das Trachtpflanzenbuch. München: Ehrenwirth Verlag; 1969.
  • 29. Rudall P. Homologies of inferior ovaries and septal nectaries in monocotyledons. Int J Plant Sci. 2002;163(2):261–276.
  • 30. Dahlgren RMT, Clifford HT. The monocotyledons: a comparative study. London: Academic Press; 1982.
  • 31. Smets EF, Ronse Decraene LP, Caris P, Rudall PJ. Floral nectaries in monocotyledons: distribution and evolution. In: Wilson KL, Morrison DA, editors. Monocots: systematics and evolution. Melbourne: CSIRO; 2000: p. 230–240.
  • 32. Dafni A, Werker E. Pollination ecology of Sternbergia clusiana (Ker-Gawler) Spreng. (Amaryllidaceae). New Phytol. 1982;91:571–577.
  • 33. Vogel S. The role of scent glands in pollination on the structure and function of osmophores. New Dehli: A Merind Publishing Co; 1990.
  • 34. Weryszko-Chmielewska E, Stpiczyńska M. Osmophores of Amorphophallus rivieri Durieu (Araceae). Acta Soc Bot Pol. 1995;64(2):121–229.
  • 35. Aschan G, Pfanz H. Why snowdrop (Galanthus nivalis L.) tepals have green marks. Flora. 2006;8:623–632.
  • 36. Nepi M. Nectary structure and ultrastructure. In: Nicolson SW, Nepi M, Pacini E, editors. Nectaries and nectar. Dordrecht: Springer. 2007. p. 129–166.
  • 37. Weryszko-Chmielewska E, Chwil M. Morphological features of the nectary and of the pollen grains and the foraging value of the flowers of yellow azalea (Rhododendron luteumSweet). Journal of Apicultural Science. 2005;422:5–12.
  • 38. Weryszko-Chmielewska E, Chwil M. Micromorphology of nectaries of Rhododendron catawbiense Michx. at different flower development stages. Acta Agrobot. 2007;60(2):15–22.
  • 39. Weryszko-Chmielewska E, Chwil M. Micromorphology of the epidermis of the floral nectary of Rhododendron japonicum (A. Gray) JV Suringar ex EH Wilson. Acta Agrobot.2007;60(1):45–53.
  • 40. Chwil S, Chwil M. Micromorphology and ultrastructure of the floral nectaries of Polemonium caeruleum L. (Polemoniaceae). Protoplasma. 2012;249(4):1059–1069.
  • 41. Stpiczyńska M, Davies KL, Gregg A. Nectary structure and nectar secretion in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge (Orchidaceae). Plant Syst Evol. 2003;238(1):119–126.
  • 42. Lüttge U. Green nectaries: the role of photosynthesis in secretion. Bot J Linn Soc. 2013; 173:1–11.
  • 43. Woźny A, Michejda J, Ratajczak L. Podstawy biologii komórki roślinnej. Poznań: Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza; 2001.
  • 44. Evert RF. Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure,function, and development. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc; 2006.
  • 45. Pyke KA, Howells CA. Plastid and stromule morphogenesis in tomato. Ann Bot. 2002;90:559–566.
  • 46. Waters MT, Fray RG, Pyke KA. Stromule formation is dependent upon plastids size, plastid differentiation status and the density of plastids within the cell. Plant J. 2004;39:655–667.
  • 47. Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR. Exchange of protein molecules through connections between higher plant plastids. Science. 1997;276:2039–2042.
  • 48. Inaba T, Ito-Inaba Y. Versatile roles of plastids in plant growth and development. Plant Cell Physiol. 2010;51:1847–1853.
  • 49. Giełwanowska I, Szczuka E, Bednara J, Górecki R. Anatomic features and ultrastructure of Deschampsia antarctica Desv. Leaves from different growing habitats. Ann Bot.2005;96:1109–1119.
  • 50. Giełwanowska I, Szczuka E. New ultrastructural features of organelles in leaf cells of eschampsia antarctica Desv. Polar Biol. 2005;28:951–955.
  • 51. Fahn A. Secretory tissues in plants. New York, NY: Academic Press; 1979.
  • 52. Kronestedt-Robards E, Robards AW. Exocytosis in gland cells. In: Hawes CR, Coleman JOD, Coleman DE, editors. Endocytosis, exocytosis and vesicle traffic in plants. Cambridge:Cambridge University Press. 1991. p. 199–232.
  • 53. Weryszko-Chmielewska E, Sawidis T, Piotrowska K. Anatomy and ultrastructure of floral nectaries of Asphodelus aestivus Brot. (Asphodelaceae). Acta Agrobot. 2006;59:29–42.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.