PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 74 |

Tytuł artykułu

Chlorophyll degradation and the activity of chlorophyllase and Mg-dechelatase during leaf senescence in Fagus sylvatica

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The induction and course of autumn leaf senescence in early, intermediate and late phenological forms of beech (Fagus sylvatica L.) was studied by analysing the contents of chlorophyll a and b, chlorophyll degradation products and the activities of chlorophyllase and Mg-dechelatase. Studies were conducted in two beech stands differing in the date of senescence onset. Leaf samples were collected from July to October in 2007 and 2009. The main trigger of leaf senescence in beech was a temperature drop occurring in parallel with the appropriate photoperiod. The early phenological form was the most sensitive to temperature. Chlorophyll degradation in senescing leaves of this form occurred in three stages, which strongly coincided with the dates of sudden temperature drops. These stages were less visible in the intermediate form, whereas chlorophyll degradation in the late form was the most stable and occurred in two stages. The fraction of chlorophyllides and phaeophytin in relation to chlorophylls in the early phenological form was significantly higher than that in the late form. Biochemical analyses indicate that pigment dephytylation associated with an increase in chlorophyllase activity is an early reaction of chlorophyll degradation, whereas the Mg-dechelating reaction was much less important. The correlation coefficients between the proportion of chlorophyllides and chlorophyll content for the early, intermediate and late phenological forms were –0.90, –0.87 and –0.72, respectively, providing evidence of chlorophyllase activity in vivo. The activity of chlorophyllase depended significantly on the phenological form. All chlorophyll degradation parameters were highly correlated with temperature changes during senescence. The early phenological form was characterised by the highest correlation coefficients.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

74

Opis fizyczny

p.43-57,fig.,ref.

Twórcy

autor
  • Department of Forest Pathology, Mycology and Tree Physiology, Agricultural University in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland

Bibliografia

  • Ben-Yaakov E., Harpaz-Saadi S., Galili D., Eyal Y., Goldschmidt E. 2006. The relationship between chlorophyllase activity and chlorophyll degradation during the course of leaf senescence in various plant species. Israel Journal of Plant Sciences 54: 129–135.
  • Coleman G.D., Englert J.M., Chen T.H.H., Fuchigami L.H. 1993. Physiological and environmental requirements for poplar (Populus deltoides) bark storage protein degradation. Plant Physiology 102: 53–59.
  • Costa M.L., Civello P.M., Chaves A.R., Martinez G.A. 2002. Characterization of Mg-dechelatase activity obtained from Fragaria × ananassa fruit. Plant Physiology and Biochemistry 40: 111–118.
  • Cufar K., Prislan P., de Luis M., Gricar J. 2008. Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees – Structure and Function 22: 749–758.
  • Delpierre N., Dufrene E., Soudani K., Ulrich E., Cecchini S., Boe J., Francois C. 2009. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology 149: 938–948.
  • Diaz C., Purdy S., Christ A., Morot-Gaudry J.F., Wingler A., Masclaux-Daubresse C. 2005. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. Plant Physiology 138: 898–908.
  • Dolnicki A., Kraj W. 2001. Leaf morphology and the dynamics of frost-hardiness of shoots in two phenological forms of European beech (Fagus sylvatica L.) from Southern Poland. Electronic Journal of Polish Agricultural Universities 4,
  • (http://www.ejpau.media.pl/volume4/issue2/forestry/art-01.html).
  • Estrella N., Menzel A. 2006. Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Research 32: 253–267.
  • Fracheboud Y., Luquez V., Bjorken L., Sjodin A., Tuominen H., Jansson S. 2009. The control of autumn senescence in European aspen. Plant Physiology 149: 1982–1991.
  • Garcia-Plazaola J.I., Becerril J.M. 2001. Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis. Australian Journal of Plant Physiology 28: 225–232.
  • Gepstein S., Sabehi G., Carp M.J., Hajouj T., Nesher M.F., Yariv I., Dor C., Bassani M. 2003. Large-scale identification of leaf senescence-associated genes. The Plant Journal 36: 629–642.
  • Hejtmánek J. 1956. The early and late-flushing forms of beech. Lesne Prace 35: 167–171.
  • Hirschfeld K.R., Goldschmidt E.E. 1983. Chlorophyllase activity in chlorophyll-free citrus chromoplasts. Plant Cell Reports 2: 117–118.
  • Hortensteiner S. 2006. Chlorophyll degradation during senescence. Annual Review of Plant Biology 57: 55–77.
  • Iriyama K., Ogura N., Takamiya A. 1974. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. The Journal of Biochemistry 76: 901–904.
  • Janave M.T. 1997. Enzymic degradation of chlorophyll in cavendish bananas: In vitro evidence for two independent degradative pathways. Plant Physiology and Biochemistry 35: 837–846.
  • Keskitalo J., Bergquist G., Gardestrom P., Jansson S. 2005. A cellular timetable of autumn senescence. Plant Physiology 139: 1635–1648.
  • Kraj W. 2014. Proteolytic activity and nitrogen remobilisation in senescing leaves of phenological forms of Fagus sylvatica. Dendrobiology 72: 163–176.
  • Kraj W., Sztorc A. 2009. Genetic structure and variability of phenological forms in the European beech (Fagus sylvatica L.). Annals of Forest Science 66: 203.
  • Lichtenthaler H.K., Wellburn A.R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions 11: 591–592.
  • Lim P.O., Kim H.J., Nam H.G. 2007. Leaf senescence. Annual Review of Plant Biology 58: 115–136.
  • Matile P., Hortensteiner S., Thomas H., Krautler B. 1996. Chlorophyll breakdown in senescent leaves. Plant Physiology 112: 1403–1409.
  • Matile P., Schellenberg M., Vicentini F. 1997. Localization of chlorophyllase in the chloroplast envelope. Planta 201: 96–99.
  • Menzel A. 2003. Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change 57: 243–263.
  • Morecroft M.D., Stokes V.J., Morison J.I.L. 2003. Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake. International Journal of Biometeorology 47: 221–226.
  • Perkins H.J., Roberts D.W.A. 1962. Purification of chlorophylls, pheophytins and pheophorbides for specific activity determinations. Biochimica et Biophysica Acta 58: 486–498.
  • Porra R.J., Thompson W.A., Kriedemann P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) – Bioenergetics 975: 384–394.
  • Sabater B., Rodriguez M.T. 1978. Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels. Physiologia Plantarum 43: 274–276.
  • Schieber B. 2006. Spring phenology of European beech (Fagus sylvatica L.) in a submountain beech stand with different stocking in 1995–2004. Journal of Forest Science 52: 208–216.
  • Schuster C., Kirchner M., Jakobi G., Menzel A. 2014. Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica. International Journal of Biometeorology 58: 485–498.
  • Sokal R.R., Rohlf F.J. 1995. Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New York.
  • Srivastava L.M. 2002. Vegetative storage protein, tuberization, senescence, and abscission. In: Plant growth and development. Hormones and environment. Academic Press, San Diego, pp. 473–520.
  • Stachak A. 1965. Fenologia buka zwyczajnego na tle warunków siedliskowych w Puszczy Bukowej pod Szczecinem w latach 1957–1961. Szczecińskie Towarzystwo Naukowe, Wydział Nauk Przyrodniczo-Rolniczych, Szczecin, pp 1–100.
  • Sytykiewicz H., Sprawka I., Czerniewicz P., Sempruch C., Leszczyński B., Sikora M. 2013. Biochemical characterisation of chlorophyllase from leaves of selected Prunus species – A comparative study. Acta Biochimica Polonica 60: 457–465.
  • Škvareninová J., Snopková Z. 2011. The development of phenological stages of European beech (Fagus sylvatica L.) in Slovakia during the period of 1996–2010. In: Bioclimate: Source and Limit of Social. Šiška B., Hauptvogl M., Eliašová M. (eds.). Development International Scientific Conference, 6–9 September 2011, Topolčianky, Slovakia.
  • Takamiya K.I., Tsuchiya T., Ohta H. 2000. Degradation pathway (s) of chlorophyll: what has gene cloning revealed? Trends in Plant Science 5: 426–431.
  • Tang L., Okazawa A., Fukusaki E., Kobayashi A. 2000. Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints. Zeitschrift für Naturforschung 55: 923–926.
  • Vernon L.P. 1960. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Analytical Chemistry 32: 1144–1150.
  • Vicentini F., Iten F., Matile P. 1995. Development of an assay for Mg-dechelatase of oilseed rape cotyledons, using chlorophyllin as the substrate. Physiology Plantarum 94: 57–63.
  • Vitasse Y., Francois C., Delpierre N., Dufrene E., Kremer A., Chuine I., Delzon S. 2011. Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meterology 151: 969–980.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c70de4bc-ce17-429c-bb80-5b411b960f91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.